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Place Recognition in Dynamic Environments

Abstract

We have developed a technique for place learning and place recognition in dynamic environments.  Our

technique associates evidence grids with places in the world and uses hill climbing to find the best alignment

between current perceptions and learned evidence grids.  We present results from five experiments performed

using a real mobile robot in a real-world environment.  These experiments measured the effects of transient and

lasting changes in the environment on the robot's ability to localize.  In addition, these experiments tested the

robot's ability to recognize places from different viewpoints and verified the scalability of this approach to

environments containing large numbers of places.  Our results demonstrate that places can be recognized

successfully despite significant changes in their appearance, despite the presence of moving obstacles, and despite

observing these places from different viewpoints during place learning and place recognition.



1 Introduction

Place learning and place recognition are two of the central issues in mobile robotics.  Unless a robot has

an absolute position reference (e.g. from a global positioning satellite), it needs some method to determine its

current location using its sensors.  Place learning consists of associating perceptions with locations in the world.

Place recognition consists of matching current perceptions with those previously learned to determine the robot's

current location.

Much research has been done on these topics, but most has been confined to environments that do not

change.  In contrast, most environments containing people do change, and change often.  People move chairs and

rearrange desks.  They open closed doors and close open ones.  A localization algorithm that depends upon an

unchanging world is likely to fail in any environment containing human beings.

Our goal is to develop methods for place learning and place recognition that are robust to the types of

changes that robots may encounter in human environments.  We have developed a technique that associates

evidence grids with places in the world and uses hill climbing to find the best alignment between current

perceptions and the learned evidence grids.

This paper presents results from five experiments performed using a real mobile robot in a real-world

environment.  The first experiment measured the effects of lasting changes in the world upon place recognition,

whereas the second study combined lasting changes with shifts in viewpoint.  The third experiment measured how

well our approach scaled to a large number of places and also how well it handled transient changes in the world.

The fourth experiment focused on a particularly challenging environment, a hallway containing many regions of

similar appearance.  The final experiment involved the same hallway, but with changed viewpoints.

2 Related Work

Many researchers have studied place learning and place recognition for mobile robots.  Their proposed

spatial representations include Kuipers and Byun's distinctive places1, Kortenkamp's visual scenes2, Engelson's

image signatures3, and Greiner and Isukapalli's landmarks.4  However none of this research has addressed the issue

of place recognition in dynamic environments, where the appearance of places may change over time.  Some of this

work may be applicable—for example, Kortenkamp's visual scenes and Engelson's image signatures may remain
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distinguishable despite other changes in the environment.  However, none of these techniques have been tested in

dynamic environments.

Leonard and Durrant-Whyte5 have developed methods for localization using sonar sensors to track the

positions of environment features (planes, cylinders, corners, and edges) with extended Kalman filters.  While their

approach has been successful in simple environments, we believe our approach is better suited for complex

dynamic environments where features are subject to frequent changes.

Schiele and Crowley6 report a method that estimates position based on matching line segments extracted

from evidence grids using Hough transforms and Kalman filtering.  However, their research has only dealt with

static environments, and it is unclear how robust their techniques would be in dynamic environments.

Courtney and Jain7 describe an approach that extracts features from evidence grids built using sonar,

vision, and infrared sensors, and uses these features for place recognition.  However, their research was also

limited to static environments, and identifications based on these features might not be stable in dynamic

environments.

Thrun8 has used evidence grids for Cartesian position estimation in his RHINO system, but this approach

assumes that walls will only be parallel or perpendicular to each other.  Although this may hold for most indoor

environments, obstacles can make it difficult to determine the actual orientation of walls.  Our approach differs in

localizing based upon all of the detected features of the environment, rather than relying upon a priori assumptions

about the structure of the world.

Schultz and Grefenstette9 report results on continuous localization using evidence grids.  In their work,

local grids constructed by the robot are continuously registered with a global grid to determine the robot's Cartesian

coordinates.  Our work differs in studying the ability to recognize distinct places using separate grids.

In previous work10, we have used evidence grids for place learning in a static environment.  This research,

conducted mostly in simulation, used an exhaustive search over all possible translations to find the best alignment

between the test grid and training grids, and did not handle rotational alignment.  The work we describe in this

paper differs in dealing with dynamic environments in the real world, handling rotational as well as translational

alignment, and using a hill-climbing algorithm to more efficiently search the space of possible transformations.
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In other previous research11, we have also developed a technique for using evidence grids, along with a

hill-climbing algorithm for alignment, to correct errors in dead reckoning in a dynamic real-world environment.

However, that localization procedure dealt only with a single location and did not address learning and recognizing

multiple places.

3 Place Learning

The localization system described in this paper is the newest component of ELDEN (Exploration and

Learning in Dynamic ENvironments), an integrated mobile robot system developed for exploration, learning, and

navigation in dynamic, real-world environments.12  Place learning consists of building an evidence grid for a

region in space and associating it with a place in the environment.  Each place is represented as a node within a

topological/metric map, and each node stores the Cartesian location of the corresponding place.  The topological

component is included for navigation purposes, even though it is not used for place recognition.

3.1 Evidence Grids

3.1.1 Prior Probabilities and Sensor Models

Evidence grids are a spatial representation developed by Moravec and Elfes.13  Space is represented as a

Cartesian grid where each cell has a certain probability of being occupied.  Initially, each of these cell probabilities

is set to the estimated prior probability of cell occupancy.  For example, if one quarter of the space in a given area

is occupied, one might set the prior probability to 0.25.  (In practice, evidence grids tend to be insensitive to errors

in the prior probability, and an estimate of 0.5 generally works well.)

Each time the robot receives a sensor input, the evidence grid is updated using the corresponding sensor

model.  Each sensor model describes the probability that cells are occupied given the reading received.  This model

depends on the characteristics of the individual sensor.  One of the major advantages of the evidence grid

representation is its ability to fuse sensor information.  Any number of sensor readings from any number of sensors

can be combined as long as models exist for each sensor type.
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3.1.2 Updating Evidence Grids

Formally, evidence grids provide a means for combining information from sensor readings in the

following way.14  If X represents information such as a sensor reading, then p(o|X) is the probability that a cell is

occupied given X, and p(¬o|X) is the probability that this cell is not occupied given X.  Then, from Bayes' theorem:

p(o X)
p(¬o X)

=
p(X o)

p(X ¬o)
×

p(o)
p(¬o)

where p(X|o) is the probability of receiving information X given that this cell is occupied, p(X|¬o) is the

probability of receiving information X given that this cell is not occupied, p(o) is the prior probability that any

given cell is occupied, and p(¬o) is the prior probability that any given cell is unoccupied, p(¬o) = 1 - p(o).

If A represents the current state of the grid and B represents the information from a new sensor reading,

then the cell occupancy probabilities can be combined using the equality:

p(o A ∩ B)
p(¬o A ∩ B)

=
p(o A)

p(¬o A)
×

p(o B)
p(¬o B)

This makes the approximation that A and B represent independent information, which is not true when a particular

point can be sensed more than once (by the same or different sensors).  In practice, this approximation means that

the overall occupancy results tend to be accurate, but the numerical occupancy probabilities are not reliable.  For

example, if the sonar cones overlap for two sensor readings, the cells in the overlap will have their probabilities

increased or decreased twice, as if the two sensor readings provided independent information about the structure

within this region.

Konolige15 presents one approach to dealing with this problem.  In this method, pose information is stored

with each cell, indicating the incident direction of each sonar reading.  Only the first sonar reading from a

particular direction is considered for each cell—subsequent readings are ignored.  This approach works well in

static environments, but is not well-suited to dynamic environments, since the early state of the world will become

"frozen" into the grid, and the grid will not be updated to reflect future changes that occur in the world.  Instead we

choose to accumulate multiple sensor readings over time, using the standard evidence grid formulation, and then

we design our grid matching function to be tolerant to the uncertainty in cell occupancy probabilities.
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3.1.3 Evidence Grid Advantages for Dynamic Environments

Accumulating multiple readings over time is an effective method of filtering out transient changes.

Consider a person walking past the robot as it maps a particular region of space.  This person's path will cover

many grid cells, but each only for a brief moment.   Each sonar reading that reflects from the person will increase

the occupancy probability of the corresponding cells.  However, each cell will only be occupied briefly, so all of the

other sonar readings incident on this cell will reduce its occupancy probability.  As a result, the cells along this

path will have a low occupancy probability despite the person's passage.

In addition to providing an effective method for combining data from multiple sensor readings, evidence

grids have two other advantages for use in dynamic environments.  First, they can be updated quickly.  Using a

logarithmic transformation of the equations described above, each cell update can be computed with a single

addition.  Second, small changes in the environment tend to result in small changes to the corresponding grid

representation.  This property is important for dealing with lasting changes in the environment.

One exception to the second property is the case of specular reflections, which occur when a sonar pulse

hits a flat surface and reflects away from (rather than back to) the sensor.  As a result, the sensor registers a range

that is substantially larger than the actual range.   Because of this, a small change in the angle of a surface could

potentially result in a substantial change to the evidence grid.  Konolige15 also suggests a method for dealing with

specular reflections by ignoring all sonar readings if they would imply that previously occupied cells are

unoccupied (as would occur if a specular reflection were to overlap an obstacle).  However, this would not work for

dynamic environments, since a previously occupied space may actually have become unoccupied due to changes in

the world.  Instead, during the construction of each evidence grid, we rotate the sonar sensors through a range of

angles equivalent to the width of the sonar arc.  As a result, if both specular and non-specular reflections are

possible from a given viewpoint, then both will be incorporated into the evidence grid.

3.1.4 Evidence Grid Specifics

We used a Nomad 200 mobile robot in our research.  This robot is equipped with 16 sonar sensors, evenly

spaced around the base at 22.5 degree intervals.  In order to build each evidence grid, the robot remained at the

center of the place region and took eleven sets of sixteen sonar readings at two degree intervals (for a total of 176

sonar readings for each grid).
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Sonar sensors have a number of well-known limitations.  The most severe is the problem with specular

reflections described above.  Other limitations include the speed of sound, which restricts the firing rate of any

given sensor by the maximum time required for the pulse to travel to a distant obstacle and return, and the

requirement that other sonar sensors remain inactive while the current pulse is in flight.

Despite these limitations, we decided to use sonar because these sensors are relatively low-cost and

available for a wide variety of mobile robot platforms, thus providing results that would be relevant to the largest

number of researchers and developers of mobile robots.  We plan future work with more precise, albeit more

expensive and less widely available, sensors such as laser rangefinders.

In our research, each evidence grid contained a 64 x 64 matrix of cells representing an area 30 feet by 30

feet.  The grid size was selected to correspond to the area contained within the effective range of the sonar sensors

(15 feet) as viewed from the center of each place region.  Each cell corresponds to an area about half a foot wide,

which is sufficient resolution to represent most of the significant features (e.g. walls, desks, chairs) within a typical

office environment.  Future experiments are planned to measure the effect of cell size on recognition accuracy.

Each cell is represented by a single byte, using a logarithmic scale, so the total memory required for each grid is

4096 bytes.

4 Place Recognition

Place recognition consists of building a new evidence grid at the robot's current location (the recognition

grid) and matching this grid against all of the grids that have been previously associated with places in the world

(the learned grids).  The recognition grid is translated and rotated to find the best match with each learned grid.  A

multiresolution hill-climbing algorithm searches the space of possible translations and rotations.

We designed this method to recognize a place from a number of different positions and orientations within

that place.  Shifts in position are handled by translating the recognition grid, whereas shifts in orientation are

handled by rotating the recognition grid.

We define translations and rotations over evidence grids in the following way.  The origin of the

coordinate frame is located at the center of each grid, corresponding to the robot's position when the grid was

constructed.  Each cell in the recognition grid is translated by displacing the point corresponding to the center of
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each cell and determining into which cell the new point would fall in the learned grid.  Each cell in the recognition

grid is rotated by computing the vector from the origin to the center of the cell, then rotating this vector around the

origin, and determining into which cell the new vector would fall in the learned grid.

A match score is computed for each pair of corresponding cells (one in the recognition grid, the other in

the learned grid).  This match metric is given by:

s(i, j) =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

1 if p(i) > p0 and p(j) > p0

1 if p(i) < p0 and p(j) < p0

1 if p(i) = p0 and p(j) = p0

0 otherwise

where s(i,j) is the match score for corresponding cells i and  j, p(i) is the probability that cell i is occupied, p(j) is

the probability that cell j is occupied, and p0 is the prior probability that any cell is occupied.  This score is summed

over all of the corresponding cells, and the total is the match score for the learned grid for the current

transformation.

We developed this match metric to deal with the problem of non-independent sensor readings.  Since the

sonar cones overlap, their sensor readings are not independent.  As a result, the occupancy probabilities in the

evidence grid do not accurately reflect the precise probability that each cell will be occupied.  However, what is

reliable is whether each cell is more likely or less likely to be occupied than the prior probability (or whether it has

not been sensed at all, in which case it will be equal to the prior probability).  Thus, the match metric increases the

match score whenever two corresponding cells are either both more likely to be occupied, less likely to be occupied,

or unsensed in both the recognition grid and the learned grid.

The hill-climbing algorithm applies this process iteratively to find the best transformation between the

recognition grid and each learned grid.  The hill-climbing stepsize is halved when a local maximum is reached, in

order to more precisely locate this maximum.  When a local maximum is reached using the minimum step size, the

search is stopped and the score for the current transformation is used as the overall match score for the learned

grid.  This process is repeated for each of the learned grids, and the grid with the maximum match score is selected

as the winner.

Place recognition is performed using an offboard workstation that communicates with the robot through a

radio ethernet.  Offboard computation permits the use of more powerful computational hardware without adding to
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the robot's onboard power requirements.  In addition, the offboard workstation presents a graphical interface that

allows users to issue commands to the robot and to visualize the spatial structure of the grids representing places

learned by the robot.  The radio ethernet provides a reliable, high bandwidth, low latency communication link

between the workstation and the robot.

In experiments 1-3, an onboard compass was used to determine orientation.  The value returned from the

compass was not accurate in an absolute sense, but was usually repeatable (+/-10 degrees) for a given location.  In

experiments 4 and 5, the robot was given an approximate estimate of its initial orientation.  This estimate did not

need to be precise.  Typically, place recognition is able to compensate for errors of up to 45 degrees.  In situations

where an initial orientation estimate would be impossible to obtain, another option would be to have the robot

perform a series of hill-climbing registrations from a set of initial angles (e.g. eight angles offset at 45 degree

intervals), and then select the particular transformation that generates the maximum overall match score.

5 Experiment 1: Lasting Changes

We designed our first experiment to measure the effects of environmental modification on the robot's

ability to recognize previously learned places.  The robot constructed grids for five places in a real-world office

environment.  These places contained many different types of obstacles, including chairs, tables, bookshelves,

boxes, workstations, and other robots.  We changed each of these places by adding new obstacles (office swivel

chairs).  We placed each new obstacle approximately six feet from the robot, spaced with roughly even angular

separations (90-180 degrees, as permitted by the positions of the existing obstacles).  Recognition grids were

constructed for each place with one, two, and three new obstacles.

Figure 1 shows the original learned grid for one of the places (adjoining both open laboratory space and a

hallway) and the corresponding recognition grids with the addition of one, two, and three new obstacles.  The

positions of these new obstacles are circled.  Cells with occupancy probabilities greater than the prior probability of

occupancy are represented by small circles.  Cells with occupancy probability equal to the prior probability are

represented by dots.  Cells with occupancy probability less than the prior probability are represented by white

space.
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In order to study the effectiveness of the hill-climbing matching procedure, we compared it to a simple

nearest-neighbor algorithm that returns the learned grid with the highest match score without any translation or

rotation.  We made this comparison in order to measure the effectiveness and the robustness of the hill-climbing

algorithm.  If hill climbing performed no better than nearest neighbor for the trials involving new viewpoints, this

would imply that it was not effective at searching the space of grid transformations.  If hill climbing performed

better than nearest neighbor for trials without additional obstacles, but this advantage disappeared as new obstacles

were added, then this would indicate that the hill-climbing algorithm was not robust to changes in the

environment.

We define a trial to consist of matching a recognition grid against all of learned grids.  If the learned grid

with the highest score corresponded to the correct place, we considered the trial successful.  If a learned grid for

another place had a higher score, we considered the trial unsuccessful.  Each of the 15 recognition grids (5 places ×

3 grids) was matched against each of the five learned grids for a total of 75 scored grid matches for each algorithm

(nearest neighbor and hill climbing).  Each trial (five grid matches) required about one second for the

nearest-neighbor algorithm and about 20 seconds for the hill-climbing algorithm, executing on a Decstation 3100.

In this experiment, both the nearest-neighbor algorithm and the hill-climbing algorithm were able to

perform place recognition with 100% accuracy for all five places.  On every trial, the recognition grid matched the

correct learned grid better than any of the other learned grids.  That the nearest-neighbor algorithm performed as

well as hill climbing was not surprising, given that place recognition was conducted from the same viewpoint as

place learning, so it was not necessary to transform the corresponding grids.  However, it was useful to learn that

hill climbing did not introduce "false positives" by transforming the recognition grid to match one of the wrong

learned grids.

6 Experiment 2: Changed Viewpoints

We performed the second experiment to measure the effects of environmental changes on the robot's

ability to recognize places from a different viewpoint than the one in which these places were originally learned.

For each place, the robot learned a grid.  Then we moved the robot to a new viewpoint (two feet away), and the

robot constructed a recognition grid.
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With the robot at the new viewpoint, we added new obstacles (swivel chairs) in the same manner as the

previous experiment, and additional recognition grids were constructed for each place with one, two, and three new

obstacles.  Figure 2 shows the learned grid constructed at the initial viewpoint for one of the places, along with the

corresponding recognition grids from the new viewpoint with no new obstacles, with one new obstacle, and with

three new obstacles.  The locations of the new obstacles are circled.

Each trial consisted of matching a recognition grid against each of the learned grids.  Trials were

successful if the learned grid with the best score corresponded to the correct place.  Each of the 20 recognition

grids (5 places × 4 grids) was matched against each of the five learned grids for a total of 100 scored grid matches

for each algorithm.

Figure 3 shows the recognition accuracy of the two matching algorithms as a function of the number of

new obstacles added.  The nearest-neighbor algorithm was able to recognize 80% of the places from the new

viewpoint with no added obstacles, but its performance dropped rapidly as new obstacles were introduced,

recognizing only 60% of the places with one new obstacle, and only 20% of the places with two or three new

obstacles.  In contrast, the hill-climbing algorithm was able to correctly recognize 100% of the places from the new

viewpoint with no new obstacles and was also able to correctly recognize 80% of the places from the new viewpoint

with one, two, or three new obstacles.

7 Experiment 3: Scaling and Transient Changes

Although the first two experiments provided promising results for a small number of places, an important

issue is how well this technique scales to many places.  In order to address this issue, we conducted a third

experiment during which the robot mapped 47 different places within an office environment.  In general, the

number of places required for a given environment will depend on both its size and its complexity.  A useful

heuristic is to control the spacing between places so that a place exists for every destination to which a user may

want to direct the robot and a place also exists for every branch point that may require the robot to select between

paths to alternative destinations.
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In this study, each place corresponded to a region five feet in diameter.  We selected this place size so that

the topological map could represent the traversable paths through the environment for a robot that is roughly two

feet in diameter.

Initially the robot starts with an empty map.  The robot's starting location becomes the first place in the

new map.  As the robot moves through the world, a new place is created whenever the robot moves out of the space

contained in the existing place regions.  A topological link is created between the new place and the place

corresponding the robot's previous location.  A new evidence grid is created and associated with the new place unit.

The environment for this experiment consisted of a large open area containing chairs, tables, desks,

bookshelves, workstations, and bicycles, bordered by walkways and surrounded by offices.  Dynamic change was

present in both transient and lasting forms.  Transient changes were caused by people moving through the

environment, during both place learning and place recognition.  Lasting changes occurred when people rearranged

chairs, added and removed obstacles (i.e. bicycles), and opened and closed doors.

Figure 4 shows the topological/metric map constructed as the robot moved through the environment.  This

figure shows the place locations along with the topological links connecting these places.   A total of 47 places

were learned and an evidence grid was constructed for each place.  The time required to build each evidence grid

was approximately thirty seconds.  The time required for place recognition was approximately five minutes

(including the time required to build the recognition grid) using a Decstation 3100, with most of the time spent in

the grid matching procedure.  We have recently transferred this system to faster hardware, which substantially

reduces the time required for place recognition, as described in the next section.

Figure 5 shows the learned grid (a) and recognition grid (b) for place 26.  On the left side of this area is a

wall containing open doorways leading to offices.  On the right side is a large open area containing chairs, desks,

and workstations.  The clear area in the lower-left corner of this area is actually a (permanent) specular reflection

caused by a whiteboard.  This surface is sufficiently smooth that it acts as a mirror for the sonar, consistently

reflecting all of the beams originating near the center of this area.  In this case, these reflections can actually be

useful as a distinguishing feature of this place, but only if the place regions are sufficiently small that the angle of

reflection is similar during learning and recognition.
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People walked past the robot during both place learning and place recognition, but the use of multiple

sensor readings allowed the corresponding transient changes to be filtered out of these grids.  The chairs on the

right side of the room were rearranged between the times that these two grids were constructed, and in addition, a

bicycle (not present in the learned grid) was placed in the upper-central region of the area during place

recognition.  Despite all of these changes, the localization system was able to correctly match the recognition grid

with the learned grid.

In order to measure the effects of larger lasting changes, we removed the whiteboard that was causing the

large specular reflection in the learned grid.  As a result, the robot detected the wall itself rather than a specular

reflection (figure 5(c)).  In spite of the substantial difference between the learned grid and the new recognition

grid, the place recognition system was still able to identify the robot's current location.

Overall, the robot was able to localize itself accurately throughout the environment.  In about 90% of the

places the robot was able to localize itself with 100% accuracy, always determining the correct place.  In the

remaining places, the robot was able to localize itself correctly roughly 75% of the time.

8 Experiment 4: Hallways with Lasting and Transient Changes

In the previous experiment, the presence of the central open area aided in disambiguating place locations.

Hallways provide a more challenging environment, because they contain many places that appear similar.  The

fourth experiment tested the robot's ability to localize within a hallway, in the presence of both transient and

lasting changes.  The width of this hallway varied from four to six feet, and the length of this hallway was

approximately 125 feet.

In this study, the robot learned 21 places within an office environment, including ten places in front of

office doors, six places adjacent to posts in the hallway, three places adjacent to an open area, and two places next

to hallway exits.  This hallway contained large amounts of metal, electrical equipment, and wiring, resulting in

magnetic fields that could change orientation 180 degrees over the space of four feet.  As a result, the compass was

not a reliable sensor for this environment.  Instead, we provided the robot with an initial estimate of its orientation

(to within roughly five degrees), and used dead reckoning to determine the relative orientation of adjacent places.
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The carpeted floor introduced substantial errors into dead reckoning, with the result that the robot's orientation

estimate at both ends of the hall was offset approximately 30 degrees from the robot's actual orientation.

To test the robot's ability to localize in this environment, the robot was placed at the center of each place

location, a new evidence grid was constructed, and the best match was found between this grid and the learned

grids using both nearest neighbor and hill climbing.  This experiment was conducted in the presence of both

transient changes and lasting changes.  People walked past the robot during both place learning and place

recognition.  People also opened and closed office doors between the construction of learned and recognition grids.

Figure 6 shows the topological/metric map learned for this hallway.  The orientation error is clearly

visible in the curvature of the map—the actual hallway is straight.  This error was also visible in the orientation of

the grids.  Figure 7 shows the learned grid (a) and recognition grid (b) constructed for place 9.

Although nearest neighbor performed well for places near the center of the hall, where the orientation

error was small, it had some difficulty recognizing places with large amounts of orientation error.  Overall, nearest

neighbor could recognize 86% of the places (18 out of 21).  Hill climbing was able to compensate for the

substantial error in orientation throughout all regions of the hallway.  Hill climbing was able to recognize 100% of

the places (21 out of 21).

We used a Decstation 5100 for this experiment.  Each grid was constructed in about ten seconds.  The

nearest-neighbor matching procedure required less than three seconds, while the hill-climbing match procedure

required around 45 seconds total to match the recognition grid against all 21 learned grids.

9 Experiment 5: Hallways and Changed Viewpoints

We conducted the final experiment in the same hallway as the previous experiment.  We used the same

places and the same learned grids, but we changed the viewpoints used for building recognition grids by offsetting

the robot's position by two feet along the hallway axis.  The goal of this study was to measure the robot's ability to

localize when positioned at locations other than those used to construct the learned grids.  For four of the locations,

this put the robot equidistant between two place locations, and for these locations, we considered either place to be

a correct localization.  As before, transient and lasting changes were present during this experiment.
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In addition to measuring the accuracy of the places recognized, we also measured the accuracy of the

Cartesian position returned from the hill-climbing match procedure.  The transformation used to align the

recognition grid with the learned grid was added to the stored Cartesian location of the identified place, and the

result was used as the robot's estimate of its Cartesian position.

Figure 8 shows the learned grid (a) and recognition grid (b) for place 14.  In this case, hill climbing was

able to localize correctly, while nearest neighbor incorrectly matched this recognition grid with the learned grid for

place 10 (figure 8(c)).  Figure 9 shows the learned grid (a) and recognition grid (b) for place 16; in this case, both

nearest neighbor and hill climbing confused the recognition grid with the learned grid for place 19 (figure 9(c)).

Overall, hill climbing performed substantially better than nearest neighbor in this experiment.  Nearest

neighbor was able to recognize 48% of the places (10 out of 21).  Hill climbing was able to recognize 71% of the

places (15 out of 21).  In the 14 out of the 15 cases where hill climbing identified the correct place, it was able to

estimate the robot's position to within one foot of its actual position; in the remaining case the error was 1.5 feet.

The average Cartesian error was only 0.4 feet.  This is sufficiently accurate to allow the robot to determine the best

path toward a given destination place.  When combined with a behavior-based approach for low-level obstacle

avoidance, this can provide the robot with the capability to navigate robustly in a dynamic environment.

Specular reflections were the main cause of place misidentification.  Translating the robot not only shifted

the view, it also changed the reflections that were visible to the robot.  In figure 9, for example, three of the

specular reflections that were visible from the original viewpoint (a) disappeared when the robot was moved (b).

We expect that using a different sensor, such as a laser rangefinder, would significantly increase recognition

accuracy.  We plan to test our technique using such a sensor in the near future.

10 Conclusions

We have developed a technique for place learning and place recognition in dynamic environments that

involves storing and matching evidence grids.  Our method uses hill climbing to find the best alignment between a

grid that describes the current surroundings and a grid stored during learning, repeats this process for each stored

grid, and selects the best grid and its associated alignment.
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We have tested this technique in a series of experiments using a real robot in an unmodified real-world

office environment.  These experiments have shown that this technique is robust to transient changes, lasting

changes, and changes in viewpoint, and that it scales well to environments containing many places.  In addition,

our studies demonstrated that the method performs well in environments such as hallways that contain many

places with similar appearance, though specular reflections from sonar, combined with changes in viewpoint, cause

errors in some cases.  Finally, our experiments suggested that, in addition to robust place recognition, the

technique provides accurate estimates of the robot's Cartesian position.

We have integrated this place recognition system with the adaptive topological path planner we developed

for ELDEN.12  The integrated system is capable of localizing robustly in dynamic environments, as described in

this paper.  This system is also capable of navigating through a changing world by constantly adapting its

topological representation to reflect new observations and determining alternative paths when unexpected obstacles

are encountered.
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(a)                                                                  (b)

(c)                                                                  (d)

Figure 1: Learned grid for place 0 (a) and recognition grids for place 0 with one (b), two

(c), and three (d) new obstacles.  The locations of the new obstacles are circled.
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(a)                                                                  (b)

(c)                                                                  (d)

Figure 2: Learned grid for place 4 (a) and recognition grid for place 4 with no new

obstacles (b), one new obstacle (c), and three new obstacles (d).  The locations of the new

obstacles are circled.
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Figure 3: Recognition accuracy of matching algorithms that use hill climbing and nearest

neighbor as a function of the number of new obstacles added to the environment.
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Figure 4: Topological/metric map learned for experiment 3.
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(a)                                                                  (b)

(c)

Figure 5: Learned grid for place 26 (a) and recognition grid for place 26 before (b) and

after (c) specular reflector (whiteboard) was removed.
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(a)                                                                  (b)

Figure 7: Learned grid (a) and recognition grid (b) for place 9.
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(a)                                                                  (b)

(c)

Figure 8: Learned grid for place 14 (a) which was matched correctly with the recognition

grid for place 14 (b) by hill climbing, and learned grid for place 10 (c) which was

incorrectly returned as the match for the recognition grid for place 14 by nearest neighbor.
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(a)                                                                  (b)

(c)

Figure 9: Learned grid for place 16 (a) and recognition grid for place 16 (b) which was

confused with learned grid for place 19 (c) by both nearest neighbor and hill climbing.
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Figure Captions

Figure 1: Learned grid for place 0 (a) and recognition grids for place 0 with one (b), two

(c), and three (d) new obstacles.  The locations of the new obstacles are circled.

Figure 2: Learned grid for place 4 (a) and recognition grid for place 4 with no new

obstacles (b), one new obstacle (c), and three new obstacles (d).  The locations of the new

obstacles are circled.

Figure 3: Recognition accuracy of matching algorithms that use hill climbing and nearest

neighbor as a function of the number of new obstacles added to the environment.

Figure 4: Topological/metric map learned for experiment 3.

Figure 5: Learned grid for place 26 (a) and recognition grid for place 26 before (b) and

after (c) specular reflector (whiteboard) was removed.

Figure 6: Topological/metric map learned for experiment 4.

Figure 7: Learned grid (a) and recognition grid (b) for place 9.

Figure 8: Learned grid for place 14 (a) which was matched correctly with the recognition

grid for place 14 (b) by hill climbing, and learned grid for place 10 (c) which was

incorrectly returned as the match for the recognition grid for place 14 by nearest neighbor.

Figure 9: Learned grid for place 16 (a) and recognition grid for place 16 (b) which was

confused with learned grid for place 19 (c) by both nearest neighbor and hill climbing.
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