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Abstract

Our research addresses how to integrate exploration
and localization for mobile robots.  A robot exploring and
mapping an unknown environment needs to know its own
location, but it may need a map in order to determine that
location.  In order to solve this problem, we have devel-
oped ARIEL, a mobile robot system that combines frontier-
based exploration with continuous localization.  ARIEL
explores by navigating to frontiers, regions on the bound-
ary between unexplored space and space that is known to
be open.  ARIEL finds these regions in the occupancy grid
map that it builds as it explores the world.  ARIEL local-
izes by matching its recent perceptions with the informa-
tion stored in the occupancy grid.  We have implemented
ARIEL on a real mobile robot and tested ARIEL in a real-
world office environment.  We present quantitative results
that demonstrate that ARIEL can localize accurately while
exploring, and thereby build accurate maps of its environ-
ment.

1.0  Introduction

We have been investigating the problem of how to
integrate exploration with localization in mobile robots.  A
robot needs to know its own location in order to add new
information to a map, but a robot may also need a map to
determine its own location.  Robots often use dead reckon-
ing to estimate their position without a map, but wheels
slip, and internal linkages may be imprecise.  These errors
accumulate over time, and the dead reckoning position
estimate becomes increasingly inaccurate.

For a robot exploring an unknown environment, a key
question is how to build a map while simultaneously using
that map to self-localize.  We have addressed this question
with ARIEL (Autonomous Robot for Integrated Explora-
tion and Localization).  ARIEL combines frontier-based

exploration [9] with continuous localization [7] in a
mobile robot system that is capable of exploring and map-
ping an unknown environment while maintaining an accu-
rate estimate of its position at all times.

In this paper, we describe how frontier-based explora-
tion and continuous localization work, and how we inte-
grated these capabilities.  ARIEL has been implemented
on a real robot and tested in a real-world office environ-
ment, and we present quantitative results comparing the
performance of exploration with and without localization.

2.0  Frontier-Based Exploration

2.1  Overview

The central question in exploration is: Given what you
know about the world, where should you move to gain as
much new information as possible?

The central idea behind frontier-based exploration is:
To gain the most new information about the world, move to
the boundary between open space and uncharted territory.

Frontiers are regions on the boundary between open
space and unexplored space.  When a robot moves to a
frontier, it can see into unexplored space and add the new
information to its map.  As a result, the mapped territory
expands, pushing back the boundary between the known
and the unknown.  By moving to successive frontiers, the
robot can constantly increase its knowledge of the world.
We call this strategy frontier-based exploration.

If a robot with a perfect map could navigate to a par-
ticular point in space, that point is considered accessible.
All accessible space is contiguous, since a path must exist
from the robot’s initial position to every accessible point.
Every such path will be at least partially in mapped terri-
tory, since the space around the robot’s initial location is
mapped at the start.  Every path that is partially in
unknown territory will cross a frontier.  When the robot
navigates to that frontier, it will incorporate more of the



space covered by the path into mapped territory.  If the
robot does not incorporate the entire path at one time, then
a new frontier will always exist further along the path, sep-
arating the known and unknown segments and providing a
new destination for exploration.  In this way, a robot using
frontier-based exploration will eventually explore all of
the accessible space in the world.

2.2  Perception and Spatial Representation

We use evidence grids [6] as our spatial representa-
tion.  Evidence grids are Cartesian grids containing cells,
and each cell stores the probability that the corresponding
region in space is occupied.  Evidence grids have the
advantage of being able to fuse information from different
types of sensors.

We use sonar range sensors in combination with a pla-
nar laser rangefinder to build our robot’s evidence grid
maps.  In order to reduce the effect of specular reflections,
we have developed a technique we call laser-limited sonar.
If the laser returns a range reading less than the sonar read-
ing, we update the evidence grid as if the sonar had
returned the range indicated by the laser, in addition to
marking the cells actually returned by the laser as occu-
pied.

As a result, evidence grids constructed using laser-
limited sonar have far fewer errors due to specular reflec-
tions, but are still able to incorporate obstacles detected by
the sonar below (or above) the plane of the laser.  In prac-
tice, we have found that laser-limited sonar drastically
reduces the number of uncorrected specular reflections
from walls and other large obstacles, which tend to be the
major sources of errors in evidence grids built using sonar.

2.3  Frontier Detection

After an evidence grid has been constructed, each cell
in the grid is classified by comparing its occupancy proba-
bility to the initial (prior) probability assigned to all cells.
This algorithm is not particularly sensitive to the specific
value of this prior probability.  (A value of 0.5 was used in
all of the experiments described in this paper.)

Each cell is placed into one of three classes:

open: occupancy probability < prior probability
unknown: occupancy probability = prior probability
occupied: occupancy probability > prior probability

A process analogous to edge detection and region
extraction in computer vision is used to find the bound-
aries between open space and unknown space.  Any open
cell adjacent to an unknown cell is labeled a frontier edge
cell.  Adjacent edge cells are grouped into frontier regions.
Any frontier region above a certain minimum size
(roughly the size of the robot) is considered a frontier.

Figure 1: Frontier detection: (a) evidence grid,
(b) frontier edge segments, (c) frontier regions

Figure 1a shows an evidence grid built by a real robot
in a hallway adjacent to two open doors.  Figure 1b shows
the frontier edge segments detected in the grid.  Figure 1c
shows the regions that are larger than the minimum fron-
tier size.  The centroid of each region is marked by
crosshairs.  Frontier 0 and frontier 1 correspond to open
doorways, while frontier 2 is the unexplored hallway.

2.4  Frontier Navigation

Once frontiers have been detected within a particular
evidence grid, the robot attempts to navigate to the nearest
accessible, unvisited frontier.  The path planner uses a
depth-first search on the grid, starting at the robot's current
cell and attempting to take the shortest obstacle-free path
to the cell containing the goal location.  While the robot
moves toward its destination, reactive obstacle avoidance
behaviors prevent collisions with any obstacles not present
while the evidence grid was constructed.

When the robot reaches its destination, it performs a
sensor sweep using laser-limited sonar, and adds the new
information to the evidence grid.  The robot then detects
frontiers in the updated grid, and navigates to the nearest
remaining accessible, unvisited frontier.

3.0  Continuous Localization

An important issue in localization is how often to
relocalize.  Many existing techniques only relocalize when
an error in position is detected or after an unacceptable
amount of error has accumulated.  With continuous local-
ization, the robot makes frequent small corrections instead
of occasional large corrections.  The advantage is that the
error is known to be small, so fast correction techniques
can be used.  Our localization technique does not rely on
the presence of specific landmarks, but instead uses the
entire local environment of the robot to determine its loca-
tion.

(a) (b) (c)



Figure 2: Continuous localization

Figure 2 shows a diagram of the continuous localiza-
tion process.  Short-term perception maps are generated at
regular intervals and several are maintained in memory.
At the beginning of each interval, a new short-term per-
ception map is created.  During the time interval, new sen-
sor data are fed to the new map and the previous maps still
in memory.  At the end of the interval, the oldest (most
mature) short-term map is used to perform the registration
against the long-term map and then discarded.

The registration process involves a search in the space
of offsets in translation and rotation that minimizes the
error in the match between the short-term and long-term
maps.  Since we expect the odometry error to be small, we
restrict the registration search to be between +/- 6 inches
in translation and +/- 2 degrees in orientation.  This
restricted search space allows the search to be completed
quickly.

This space is searched using a center-of-mass algo-
rithm that divides the search space into pose cells, picks a
random pose within each pose cell, and uses those random
poses to compute a set of match scores that are distributed
throughout the search space.

For each pose, the short-term map is translated and
rotated and then registered with the long-term map.  The
evidence from each grid cell of the short-term map is com-
pared to the spatially-correspondent grid cell of the long-
term map, and the score summed across all grid cells.  The
score for each cell is equal to the product of the cell val-
ues, using a log odds representation where cells with a
probability less than the prior have a negative value, and
cells with a probability greater than the prior have a posi-
tive value.  The match score for the short-term grid in the
specified pose is equal to the sum of all of its cell scores.

The match scores are normalized to the range [0,1],
raised to the fourth power to exaggerate the peak, and then
a center-of mass calculation is performed for all cells.  The
exaggeration of the peak is necessary because the match
score is typically very flat within the small search space,

and without it the center-of-mass calculation would
always pick a pose near the center of the search space
(very close to the robot's current pose). The center-of-mass
calculation is preferable to simply choosing the pose cell
with the maximum score because the sparse sampling of
the space (one pose per pose cell) can create additional
noise, and sampling at a higher resolution would be com-
putationally prohibitive for real time operation.

The registration of the short-term map to the long-
term evidence grid produces an offset in both translation
and rotation between the two.  This offset, required to
make the short-term map align with the long-term map, is
the same offset required to align the robot with the world,
and is directly applied to the robot odometry (taking into
account any robot motion since the registration was per-
formed).  All robot processes then use this new odometry.

For additional details on continuous localization
see [7].

4.0  ARIEL

4.1  System Overview

Frontier-based exploration provides a way to explore
and map an unknown environment, given that a robot
knows its own location at all times.  Continuous localiza-
tion provides a way for a robot to maintain an accurate
estimate of its own position, as long as the environment is
mapped in advance.  The question of how to combine
exploration with localization raises a “chicken-and-egg”
problem: the robot needs to know its position in order to
build a map, and the robot needs a map in order to deter-
mine its position.

Figure 3: ARIEL system architecture

ARIEL is designed to address this problem.  We
assume that the robot starts with an accurate initial posi-
tion estimate, so localization only needs to correct for dead
reckoning errors that accumulate while the robot moves
through the world.  However, these errors can accumulate
quickly, so it would not be feasible to map a large environ-
ment using dead reckoning alone.

The solution is to use the partial maps constructed by
frontier-based exploration  These maps are incrementally
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extended whenever the robot arrives at a new frontier and
sweeps its sensors.  Even though these maps are incom-
plete, they describe the spatial structure of the robot’s
immediate environment, including all of the territory
between the robot’s current location and all of the detected
frontiers.  These maps are passed to continuous localiza-
tion to be used as long-term maps.

As the robot navigates to the next frontier,  continuous
localization constructs short-term maps that represent the
robot’s recent perceptions.  If dead reckoning error starts
to accumulate, these short-term maps will deviate from the
long-term map.  The registration process will then correct
for this error by adjusting the robot’s position estimate.

When the robot arrives at the new frontier, its position
estimate will be accurate.  When frontier-based explora-
tion performs the next sensor sweep, the new information
will be integrated at the correct location within the map.

Figure 3 shows the system architecture for ARIEL.
Frontier-based exploration and continuous localization run
in parallel.  Both processes make use of information from
the robot’s sensors, but only frontier-based exploration
sends commands to the robot’s motor control system.
Frontier-based exploration passes a new map to continu-
ous localization every time the robot arrives at a new fron-
tier.  Continuous localization corrects the robot’s dead
reckoning transparently, so no direct communication is
necessary from localization to exploration.

4.2  Implementation

ARIEL is implemented on a Nomad 200 mobile robot
equipped with a planar laser rangefinder, sixteen sonar
sensors, and sixteen infrared sensors.  Frontier-based
exploration and continuous localization run on separate
Sparcstation 20s that communicate with each other over an
ethernet and with the robot over a radio ethernet.  A Pen-
tium processor onboard the robot handles low-level sensor
processing and motor control.

5.0  Experiments

5.1  Overview

In previous work [9], we have demonstrated that fron-
tier-based exploration can successfully map real-world
office environments. In relatively small environments,
such as a single office or laboratory,  frontier-based explo-
ration was capable of mapping accurately without continu-
ous localization.  However, for larger environments,
significant amounts of position error can accumulate using
dead reckoning, so localization is necessary for building
accurate maps.

To measure ARIEL’s effectiveness in a larger environ-
ment, we have conducted a set of experiments in a hallway
environment (70 feet long).  This hallway, like many of

those in office buildings, is cluttered with obstacles.  These
obstacles include a printer table that blocks half the width
of the hallway, a set of open cabinets containing electrical
wiring, switchboxes mounted on the walls, various card-
board boxes, a water fountain, and a water cooler.

In order to measure ARIEL’s performance, we ini-
tially constructed a ground truth grid by manually posi-
tioning the robot at viewpoints throughout the hallway and
sweeping the robot’s sensors.  This ground truth grid is
only used to score the grids learned by ARIEL.  The
ground truth grid is not used by ARIEL for exploration or
localization.

Figure 4: Ground truth evidence grid for hallway

Figure 4 shows the ground truth evidence grid for the
hallway environment.  Cells representing open space are
represented by whitespace.  Cells representing occupied
space are represented by black circles.  Cells representing
unknown territory (beyond the hallway walls) are repre-
sented by small dots.  The five Xs correspond to the
robot’s starting locations for ARIEL’s exploration trials.

The four crosshairs on the map indicate reference
points at the corners of the ends of the hallways.  Since
dead reckoning error accumulates as the robot moves
through the world, the points explored last are likely to
have the greatest amount of positional error.  And since
ARIEL always moves to the closest unexplored frontier,
one of the ends of the hallways is generally the last place
explored.  By measuring the difference between the actual
position of these hallway corners and the position of these
corners in ARIEL’s learned maps, the amount of positional
error incorporated into the map can be estimated.  In these
experiments, the maximum error between a reference
point and the corresponding feature on the learned grid is
used as a bound on the positional error introduced into the
map.  We refer to this metric as the reference point error
for the learned grid.

5.2  Exploration Without Localization

Our first set of trials measured the performance of
frontier-based exploration without continuous localization.
Five exploration trials were conducted, one from each of
the starting locations marked on Figure 4.  In three of



these trials, frontier-based exploration directed the robot to
explore the hallway and build a map, but substantial
amounts of position error accumulated during each trial.
As a result, sensor information was incorporated into the
map at the wrong locations, and the magnitude of this
error increased over time.

Figure 5: Evidence grid learned without localization

Figure 5 shows a map learned by frontier-based
exploration without localization.  The robot started at the
position marked with the X.  Initially, the robot explored
the territory on the left side of the map.  Then it navigated
back to explore the remaining frontiers on the right side of
the map.  As the robot explored, position error constantly
accumulated.  As a result, the right half of the map is con-
siderably more distorted than the left.  This grid has a ref-
erence point error of 7.0 feet.

In two of the trials, the position error was sufficiently
large to prevent further exploration.  In both of these cases,
the robot started in the middle of the hallway, and explored
one side of the hallway first, while remembering the fron-
tier location corresponding to the other side of the hall.
When the robot went back to explore the other side, the
robot’s position error was so large that the relative location
of the frontier corresponded to a position behind the (real)
hallway walls.

Frontier-based exploration without localization was
successful at mapping the entire hallway in 60% of the tri-
als.  In the successful trials, the average reference point
error for the learned maps was 7.9 feet, and the average
amount of time required to explore the hallway was 18.4
minutes.

5.3  Exploration With Localization

Our second set of trials measured ARIEL’s perfor-
mance using frontier-based exploration in combination
with continuous localization.  We used the same hallway
environment, the same starting points for the robot, and
the same ground truth evidence grid.  Frontier-based
exploration again directed the robot to explore the environ-
ment, but continuous localization also regularly updated
the robot’s position estimate as the robot explored.  Start-

ing from the same five initial positions shown in Figure 4,
ARIEL was able to build a complete map of the environ-
ment in all five trials.

Figure 6: Evidence grid learned with localization

Figure 6 shows the evidence grid learned using local-
ization starting from the position marked with the X (the
same initial position as in Figure 5).  This grid has a refer-
ence point error of only 0.4 feet, which is equal to the
width of a single grid cell.

ARIEL was successful at mapping the entire hallway
in all of the trials using continuous localization.  The aver-
age reference point error for the learned maps was 2.1 feet,
or roughly one quarter of the error in the maps learned
without localization.  ARIEL’s 100% success rate indi-
cates that this accuracy is sufficient to navigate robustly
through this cluttered hallway environment.  Reactive
obstacle avoidance allows the robot to deal with small
errors in the map.

The average amount of time required to explore the
entire hallway was 20.7 minutes.  This is slightly longer
than the average time (18.4 minutes) required without
localization, due to the time required for frontier-based
exploration to send its learned evidence grids to continu-
ous localization.  However, since the localization process
runs on a different processor than the exploration system,
the computation required for localization does not slow
down the exploration process.  For further details about
these experiments, see [9].

6.0  Related Work

Considerable research has been done in robot map-
building, but most of this research has been conducted in
simulation [3] or with robots that passively observe the
world as they are moved by a human controller [2].  How-
ever, a few systems for autonomous exploration have been
implemented on real robots.

Mataric [5] has developed Toto, a robot that combines
reactive exploration, using wall-following and obstacle-
avoidance, with a simple topological path planner.  The
reactive nature of Toto’s exploration limits its ability to
map environments where wall-following is insufficient to
explore the complex structure of the world.



Lee [4] has implemented Kuipers Spatial Semantic
Hierarchy [3] on a real robot.  However, this approach
assumes that all walls are parallel or perpendicular to each
other, and this system has only been tested in a simple
environment consisting of a three corridors constructed
from cardboard barriers.

Thrun and Bücken [8] have developed an exploration
system that builds a spatial representation that combines
an evidence grid with a topological map. This system has
been able to explore the network of hallways within a
large building.  While this approach works well within the
hallway domain, it also assumes that all walls are either
parallel or perpendicular to each other.  An implicit
assumption is that walls are observable and not obstructed
by obstacles.  These assumptions make this approach
unsuitable for rooms cluttered with obstacles that may be
in arbitrary orientations.

Duckett and Nehmzow [1] have developed a mobile
robot system that combines exploration and localization.
This system uses wall-following for exploration.  For
localization, this system uses a self-organizing neural net-
work trained using ART.  Since this system relies upon
dead reckoning to determine the robot’s position during
exploration, any drift in dead reckoning during exploration
will be incorporated into the map.  This robot has only
been tested in a small enclosed area (6 meters by 4
meters), so it is unclear whether this approach will scale to
larger, more complex, environments.

ARIEL has a number of advantages over previous
exploration systems.  ARIEL can explore efficiently by
moving to the locations that are most likely to add new
information to the map.  ARIEL can explore environments
containing both open and cluttered space, where walls and
obstacles are in arbitrary orientations.  Finally, ARIEL can
maintain an accurate estimate of the robot’s position even
as it moves into unknown territory.

7.0  Conclusion

We have introduced ARIEL, a mobile robot system
that combines frontier-based exploration with continuous
localization.  ARIEL answers the question of how to learn
a new map while simultaneously using that map to self-
localize.  We have tested ARIEL in a cluttered hallway
from a real-world office environment.  These experiments
have shown that ARIEL can explore an unknown environ-
ment and build accurate maps that can be used for robust
navigation.
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