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ABSTRACT 

Autonomous small UGVs have the potential to greatly increase force multiplication capabilities for infantry units.  In 

order for these UGVs to be useful on the battlefield, they must be able to operate under all-weather conditions.  For the 

Daredevil Project, we have explored the use of ultra-wideband (UWB) radar, LIDAR, and stereo vision for all-weather 

navigation capabilities.  UWB radar provides the capability to see through rain, snow, smoke, and fog.  LIDAR and 

stereo vision provide greater accuracy and resolution in clear weather but has difficulty with precipitation and 

obscurants.  We investigate the ways in which the sensor data from UWB radar, LIDAR, and stereo vision can be 

combined to provide improved performance over the use of a single sensor modality.  Our research includes both 

traditional sensor fusion, where data from multiple sensors is combined in a single representation, and behavior-based 

sensor fusion, where the data from one sensor is used to activate and deactivate behaviors using other sensor modalities.  

We use traditional sensor fusion to combine LIDAR and stereo vision for improved obstacle avoidance in clear air, and 

we use behavior-based sensor fusion to select between radar-based and LIDAR/vision-based obstacle avoidance based 

on current environmental conditions. 
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1. INTRODUCTION 

Most autonomous robots have been demonstrated in relatively benign environments – either indoors or in clear weather 

outdoors.  However, autonomous battlefield robots will need to operate outdoors in adverse environmental conditions, 

such as rain, snow, fog, and smoke.  The Daredevil Project was funded by the US Army Tank-Automotive Research, 

Development, and Engineering Center (TARDEC) to investigate the use of ultra-wideband (UWB) radar for use under 

all-weather conditions, and to explore how UWB radar could be combined with high-resolution range sensing using 

LIDAR and stereo vision. 

In a previous paper
1
, we described our initial experiments with UWB radar. These experiments showed that UWB radar 

could reliably detect obstacles in a snowstorm, through dense fog, and through sparse foliage.  In this paper, we extend 

this research to the development of radar filtering algorithms to distinguish obstacles from ground clutter, and we 

perform experiments comparing the effectiveness of UWB radar and LIDAR in fog.  We also develop obstacle 

avoidance behaviors using UWB radar and fused LIDAR/vision, and we develop a technique for automatic fog detection 

that allows the Daredevil PackBot to automatically switch between these behaviors based on the current environment. 

2. RELATED WORK 

Other researchers have developed obstacle avoidance and navigation techniques for man-portable robots using vision, 

LIDAR, and sonar. Konolige developed sonar-based reactive navigation capabilities for the inexpensive ERRATIC robot 

that won second-place in the 1994 AAAI Robot Competition
2
. Researchers at the Jet Propulsion Laboratory (JPL), 

Carnegie Mellon University (CMU), iRobot, and the University of Southern California (USC) developed autonomous 

navigation capabilities for the Urban Robot (a predecessor to the iRobot PackBot) using vision and LIDAR
3
. As part of 

the Small Robot Technology Transfer Program, the US Navy Space and Naval Warfare Systems Command (SPAWAR) 

and the Idaho National Laboratory (INL) transitioned algorithms for obstacle avoidance, mapping, localization, and path 

planning to several different small robots, including the iRobot PackBot
4
. 

Automotive radars have been used as sensors for a number of autonomous vehicles, including several entrants in the 

DARPA Urban Challenge. The winning vehicle, CMU’s Boss, used a Continental ARS 300 automotive radar to measure 

the velocity of other vehicles
7
. Stanford’s Junior used five BOSCH Long Range Radars to detect moving objects in 



 

 
 

 

intersections
8
. MIT’s Talos vehicle used fifteen Delphi ACC millimeter wave radars to detect fast-approaching vehicles 

at long range
9
. 

These automotive radars differ in several fundamental ways from the UWB radar used by Daredevil. Automotive radars 

are optimized for detecting obstacles at long range (up to 200 m) with a typical range resolution of 1 m and a typical 

range accuracy of 5 percent
10

. In general, these radars return multiple tracks for the strongest targets. However, as 

Leonard
9
 points out, they are unable to reliably detect the difference between small objects (e.g. a metal bolt, a sewer 

grate) and large objects (e.g. cars). For that reason, all of these teams used radar primarily to detect moving objects, since 

any object moving at high speeds was almost certainly another vehicle under the conditions of the Urban Challenge. 

In contrast, the Multispectral Solutions (MSSI) Radar Developer’s Kit Lite (RaDeKL) UWB radar used by Daredevil 

was designed for precise ranging at short to medium range, providing 0.3 m (1 ft) resolution at ranges up to 78 m (256 

ft). Instead of providing processed radar tracks, the RaDeKL radar provides the raw radar strength measured in each 0.3 

m long range bin. As a result, the radar return can be used to measure the size and shape of obstacles. In addition, the 

RaDeKL radar is suitable for use indoors as well as outdoors, which is a key advantage for man-portable robots that are 

often used for indoor applications. 

3. DAREDEVIL PACKBOT 

 

Figure 1: Daredevil PackBot equipped with a RaDeKL UWB radar on a pan/tilt mount and a SICK LD OEM LIDAR. 

Figure 1 shows the Daredevil PackBot, which is built upon the rugged, man-portable, combat-proven iRobot PackBot 

platform. For Daredevil, we added an MSSI RaDeKL UWB radar sensor mounted on a TRACLabs Biclops pan/tilt 

mount, which in turn is mounted on a 1 m tall mast. The mast exists to raise the sensor and reduce the amount of energy 

reflected from ground clutter. 

The RaDeKL radar transmits an ultra wideband pulse (400 MHz wide) centered around 6.35 GHz, with an FCC-

approved 30 mW peak power level. The brief duration of this pulse results in extremely low transmit power (0.2 nW), 

which is equivalent to one ten-millionth of the power of a typical cell phone. The sensor requires a 1.2 W power input 

with a power voltage anywhere in the range of 7.2-35 V.  

The sensor measures returned radar strength over sequential 2 ns time intervals, corresponding to round-trip distance 

intervals of 0.6 m (2 ft) and one-way range intervals of 0.3 m (1 ft). During each time interval, the sensor integrates the 

signal return strength and maps the resulting total to an 8-bit value (0-255). The sensor repeats this process 256 times, to 

measure the radar return strength at ranges from 0 to 78 m (0 to 255 ft). The sensor then publishes this 256-value array 

over its USB interface, which is based on FTDI drivers. An optional time delay can be specified before the sensor begins 

to register return signals, allowing the 78 m usable sensor distance to begin at a longer range from the sensor (up to 273 



 

 
 

 

m). However, at longer ranges, multipath from ground reflection becomes an increasing problem. In our experiments, we 

did not use any offset, and used the default minimum range of 0 m and maximum range of 78 m. 

The physical dimensions of the sensor are 15 cm x 8 cm x 6 cm (6” x 3.25” x 2.375”). The radar has a field-of-view 

(FOV) that is 40° wide along the horizontal axis and 40° wide along the vertical axis.  Both the transmit power and 

receiver sensitivity can be adjusted on-the-fly by commands over the USB interface. 

We initially mounted the RaDeKL radar on a Biclops PT pan/tilt base manufactured by TRACLabs. The pan/tilt unit 

provides 360° coverage along the pan axis (±180°) and 180° range of motion along the tilt axis (±90°). The angular 

resolution of the pan/tilt encoders is 0.018°.  The Biclops has a maximum pan speed of 170°/sec.  The pan/tilt unit 

requires a 24 V power supply at 1 A and is controlled via a USB interface. Power for both the RaDeKL and the Biclops 

was provided by the PackBot’s onboard power system. 

Later, we replaced the Biclops PT with the Directed Perception D46 pan/tilt base.  The D46 uses direct drive pan/tilt 

motors instead of the belt drive used by the Biclops, so it has far less backlash and is considerably more robust.  The D46 

also provides 360° coverage along the pan axis (±180°), in combination with a 111° range of motion along the tilt axis 

(+31°/-90°).  The D46 has a pan resolution of 0.012° and a tilt resolution of 0.003°.  The D46 is also faster than the 

Biclops, with a maximum pan speed of 300°/sec. 

4. UWB RADAR FILTER ALGORITHMS 

4.1 Raw Radar Returns 

 

Figure 2: Raw radar return strength from RaDeKL UWB radar positioned 1 m above pavement, with maximum transmit 

power and 20 dB receiver sensitivity.  Concentric circles are spaced at 1 m intervals centered on radar.  Brighter areas 

represent stronger return signals.  Bright area at center is the result of ground clutter. Bright arc at top center corresponds to 

a concrete wall. 

We developed a real-time viewer for the scanning RaDeKL UWB radar mounted on the Biclops pan/tilt mount.  Figure 2 

shows an overhead view of a radar scan. In this image, brighter areas correspond to stronger returns. The radar is located 

at the center of the image, and the concentric circles are spaced at 1 m intervals. The bright line indicates the current 

bearing of the radar. 



 

 
 

 

For these experiments, we rotated the radar 360° (panning left and right) at a speed of 0.1 radians/second. Full power 

was used for the radar transmitter (0 dB), while the radar receiver was attenuated by -20 dB to reduce noise. 

Radar readings were received at an average rate of 10 Hz, so the average angular separation between readings was 

roughly 0.5°. Each reading consisted of the return strength for the 256 range bins (each 0.3 m long) along the current 

bearing of the radar. For each bin, we drew a square area at the corresponding location, with the brightness of the area 

corresponding to strength of the radar return. Unlike a grid representation, the (x, y) center of each region is not 

quantized, since the current sensor bearing is a continuous floating-point value. 

Figure 2 shows the difficulty of directly interpreting the raw radar returns. The wide area of strong returns near the 

sensor is due to reflections from ground clutter. The large, bright arc at the top of the image is a concrete wall. The 

bright area on the top right of the image is a shipping container. The laptop controlling the radar is just to the left and 

below the radar at the center of the image. 

Our experiments showed that the radar can detect some obstacles reliably (e.g. walls), but that there is a large amount of 

energy being returned to the sensor from the ground clutter close to the sensor. These experiments were conducted in an 

open parking lot, with the sensor mounted one meter above the ground, oriented parallel to the ground, and horizontally 

polarized.  Based on these experiments, we concluded that additional filtering was required to facilitate the interpretation 

of radar data. 

4.2 Max Filter Algorithm (MFA) 

A different filtering algorithm we developed was the max filter algorithm (MFA).  The MFA examines all of the radar 

bins in a given return and returns a positive reading for the bin with the maximum return strength, if that bin is farther 

than a minimum range threshold. If the maximum return strength is for a bin that is closer than the minimum range 

threshold, the filter returns a null reading. If more than one reading has the maximum value, the MFA returns the closest 

reading, if the range to that reading is over the minimum range threshold, and the null reading otherwise.  The MFA is a 

very effective method for finding the strongest radar reflectors in an environment with many reflections.  

4.3 Calibrated Max Filter Algorithm (CMFA) 

Our most recent and best performing filter algorithm is the calibrated max filter algorithm (CMFA), a modified version 

of the MFA. The purpose of the CMFA is to eliminate the ambient reflections from the ground plane, which are stronger 

close to the sensor and weaker farther from the sensor. In the initial MFA, the minimum detection range had to be set 

farther from the sensor to ignore the reflections from ground clutter, but this prevented the MFA from detecting close-

range obstacles. The CMFA is able to detect closer objects by subtracting the ambient reflection (with no obstacle 

present). Any remaining signal above ambient indicates the presence of an obstacle. 

In the calibration stage of the CMFA, the radar is first aimed at open space in the current environment. A series of raw 

radar readings is returned and the average value of each bin is stored in the calibration vector (1). 
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Where ci is element i of the calibration vector, rij is bin i from raw radar scan j, and n is the number of raw scans stored. 

For our experiments, we averaged over 20 raw radar scans, which were acquired over 2-4 seconds. 

We then smooth the calibration vector to insure that it is monotonically decreasing.  This removes the effect of any 

objects that may be within the radar field-of-view: 
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Where si is element i of the smoothed calibration vector and s1 = c1. 

During operation of the robot, the calibration vector is then subtracted from each raw range scan and the result is stored 

in an adjusted range vector (3). 
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Where ai is element i of the adjusted range vector and ri is bin i of the raw range vector. 

The MFA is then applied to the adjusted range vector to determine to return the filtered range value. The index of the 

maximum element of the adjusted range vector is returned. If more than one element has the maximum value, the index 

of the bin closest to the sensor is returned. 

In our experiments, we have found that the CMFA works significantly better than the MFA at detecting obstacles at 

close range. This is particularly useful for operations indoors and in cluttered environments. 

5. RADAR/LIDAR EXPERIMENTS IN FOG 

  

Figure 3: Daredevil PackBot in fog-free room (left); Corresponding radar (green) and LIDAR (red) readings (right). 

  

Figure 4: Daredevil PackBot in fog-filled room (left); Corresponding radar (green) and LIDAR (red) readings (right). 

We conducted experiments to compare the capabilities of UWB radar and LIDAR in environments filled with water-

based fog. In these experiments, we determined that dense fog would completely obscure LIDAR and vision, but this fog 

had no effect on UWB radar returns. 

The following figures show the Daredevil PackBot in our indoor test area. Initially the robot is in clear air. Then the fog 

machine is activated, and fog is allowed to fill the room until the robot is fully obscured and LIDAR and vision are 

completely blocked. 



 

 
 

 

Figure 3 (left) shows the robot in the initial, fog-free environment.  The radar rotates 360° (±180°) alternating direction 

with each sweep.  Figure 3 (right) shows the radar (green dots) and LIDAR (red dots) returns in this environment. 

Both sensors are able to detect the obstacles in this environment, and the LIDAR shows considerably higher resolution 

and accuracy. In future work, we plan to increase the effective angular resolution of the radar using occupancy grid 

techniques
12

, but LIDAR will always provide greater precision in clear air. 

Figure 4 (left) shows the test area after it has been completely filled with dense fog. Optical sensors, including both 

LIDAR and vision, are completely useless in this environment. Figure 4 (right) shows the corresponding radar and 

LIDAR returns. The LIDAR can penetrate less than 1 m through the fog in all directions, and is incapable of detecting 

any obstacles beyond this range. At the same time, the radar readings in Figure 4 are nearly identical to those in Figure 3 

(clear air). 

We then tested simple collision avoidance behaviors using both radar and LIDAR. With either sensor, the robot moves 

forward until the range to the closest obstacle ahead drops below a specified threshold.  Both behaviors worked 

flawlessly in clear air, driving to the specified distance from the forward wall and stopping. In a fog-filled environment, 

the LIDAR was unable to see through the fog, so the robot was unable to move. In contrast, the UWB radar was able to 

see through the fog, so the robot was able to drive to the specified distance from the wall and stop. There was no 

difference in the performance of the radar-based collision avoidance behavior in clear air and in dense fog. 

6. OBSTACLE AVOIDANCE USING RADAR 

We have developed a reactive radar-based obstacle avoidance algorithm that allows the Daredevil PackBot to avoid 

obstacles.  This algorithm works in the following way: 

1) Aim the UWB radar directly forward relative to the robot’s current heading. 

2) Move forward at a specified speed as long as the distance returned by the MFA is below a specified minimum 

clearance threshold. 

3) If the distance is below the specified clearance threshold: 

a) Start panning the radar right-and-left across the full 360-degree range of the radar pan axis. 

b) Continue until the range returned by the MFA exceeds the minimum clearance threshold 

4) Stop panning.  The radar is now pointed in a direction where the clearance exceeds the minimum limit.  Store this 

angle. 

5) Turn the robot in place to face the stored angle. 

6) Go to 1. 

This algorithm works well in outdoor environments.  It works moderately well in some indoor environments, but has 

difficulty with cluttered environments, where the wide field-of-view of the RaDeKL UWB radar sensor (40° wide x 40° 

high) limits the ability to detect narrow gaps between obstacles. 

7. OBSTACLE AVOIDANCE USING FUSED LIDAR/VISION 

We also applied the Scaled Vector Field Histogram that we developed for the Wayfarer Project
11

 to fused LIDAR and 

stereo vision range data from the Daredevil PackBot.  The LIDAR provided the primary source of 360-degree obstacle 

detection.  However, stereo vision allowed the Daredevil PackBot to detect obstacles that were too short to be detected 

by the LIDAR, as well as overhanging obstacles that did not intersect the LIDAR plane. 

Figure 5 shows the LIDAR (red) and stereo vision (blue) readings from the Daredevil PackBot when it is facing an 

office cubicle containing a chair.  The LIDAR is able to detect the back wall of the cubicle, but only sees the legs of the 

chair.  Stereo vision is able to see the seat of the chair and a waste basket hidden under the desk.  Figure 6 shows the 

LIDAR and stereo vision date as the robot views a table that is place against a wall above a cluttered floor.  The LIDAR 

is only able to detect the wall behind the table, but the stereo vision is able to detect the clutter under the table. 



 

 
 

 

The fusion of LIDAR and stereo vision resulted in significantly better performance (fewer collisions) than the use of 

LIDAR or stereo vision alone. 

  

Figure 5: Fused LIDAR (red) and stereo vision (blue) range readings from an office cubicle 

  

Figure 6: Fused LIDAR (red) and stereo vision (blue) range readings from a table above a cluttered floor 

8. AUTOMATIC FOG DETECTION 

Given that radar is much more effective than LIDAR and vision at sensing obstacles through fog and smoke, but LIDAR 

and stereo vision provide higher-resolution range data in clear air, a method for automatically detecting fog/smoke is 

desirable.  Since fog completely blocks LIDAR, we can use LIDAR observations to detect the presence of fog. 

The fog detection system classifies the current environment as fog/smoke-filled if all of the current LIDAR range 

readings are below a maximum threshold (2 m in these experiments).  If the robot is in clear air, at least one of the 

current LIDAR range readings is likely to be above 2 m.  Even if the robot is in a cluttered corner of the room, the path 

that the robot took to reach its current position is likely to be open. 



 

 
 

 

  

Figure 7: LIDAR readings from robot in room center (left), LIDAR readings from robot in cluttered corner (right). 

For example, Figure 7 (left) shows the LIDAR readings from the robot when it is centered in the room shown in Figure 3 

(left).  The white dots correspond to LIDAR readings, and the concentric circles are spaced at 1 m intervals.  In this scan, 

the maximum range to a LIDAR reading is 4.9 m.  Figure 7 (right) shows the LIDAR readings when the robot is moved 

into a cluttered corner of the same room.  Even though most LIDAR readings are close (< 2 m), the LIDAR readings 

corresponding in the robot’s direction of approach (bottom of figure) are farther, with a maximum reading of 5.9 m. 

  

Figure 8: LIDAR readings from robot in fog-filled room (left = room center, right = cluttered corner). 

Figure 8 shows the LIDAR readings when the room is filled with fog and the robot is located at the center (left) or corner 

(right) of the room.  In both cases, the LIDAR is blocked by the fog in all directions, resulting in a maximum ranges of 

1 m (left) and 0.8 m (right).  The automatic fog detection algorithm is able to accurately detect the presence of dense fog 

regardless of where the robot is located in the room. 

This approach to automatic fog detection is likely to work in most environments, including cluttered environments.  The 

exceptions would include extremely convoluted, maze-like environments where there are no areas much larger than the 

size of the robot, and dynamic environments where the robot was being closely followed by a person or another robot. 



 

 
 

 

9. BEHAVIOR-BASED SENSOR FUSION 

In addition to the traditional method of sensor fusion, where data from multiple sensors is combined into a single 

representation, we also investigated the use of behavior-based sensor fusion, where behaviors are activated or 

deactivated based on data from multiple sensors.  We developed an adaptive obstacle avoidance behavior that combined 

the radar-based obstacle avoidance behavior, LIDAR/vision SVFH obstacle avoidance behavior, and automatic fog 

detection. 

This adaptive obstacle avoidance behavior used the SVFH obstacle avoidance behaviors by default, but constantly 

monitored the environment for fog.  When fog was detected, the behavior automatically switched to the radar-based 

obstacle avoidance behavior.  This combined behavior allowed the robot to more effectively avoid obstacles in clear air 

(using the higher-performance SVFH algorithm), but also provided a more limited capability to avoid obstacles using 

radar when the LIDAR and stereo vision systems were blinded by fog. 

10. CONCLUSIONS 

The Daredevil Project has shown that UWB radar can be used effectively to detect and avoid obstacles through 

precipitation (rain, snow) and adverse environmental conditions (fog, smoke).  The Calibrated Max Filter Algorithm 

(CMFA) is particularly effective at discriminating obstacles from ground clutter. 

Daredevil has also shown that different sensor modalities can be combined using behavior-based sensor fusion.  Our 

automatic fog detection algorithm uses LIDAR to determine whether the robot is currently surrounded by fog.  If so, the 

radar-based obstacle avoidance behavior is activated.  If not, the higher performance LIDAR/stereo vision avoidance 

algorithm (which only works in clear air) is used instead.  This allows the combined system to exhibit more robustness to 

environmental variability and greater performance than would be possible using a single sensor modality.  This 

behavior-based sensor fusion method works without the need for explicit fusion of sensor data into a single 

representation. 
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