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Abstract—Autonomous man-portable robots have the
potential to provide a wide range of new capabiligs for both
military and civilian applications.  Previous reseach in
autonomy for small robots has focused on vision, DAR, and
sonar sensors. While vision and LIDAR work well inclear
weather, they are seriously impaired by rain, snowfog, and
smoke. Sonar can penetrate adverse weather, but sidimited
range outdoors, and suffers from specular reflectios indoors.
For the Daredevil Project, we have investigated thase of ultra-
wideband (UWB) radar to provide obstacle detection
capabilities for man-portable robots. Our researchshows that
UWB radar can effectively penetrate adverse weather
including dense fog, and detect obstacles that wallbe
undetectable by vision or LIDAR under the same conitions.
We have developed filtering algorithms that processhe raw
radar returns to eliminate reflections from ground clutter and
make obstacles easier to detect. We have testedstBystem on
an iRobot PackBot equipped with both UWB radar and
LIDAR, and we have demonstrated how UWB radar can b
used for obstacle detection in obscured environmesit

I. INTRODUCTION

MALL unmanned ground vehicles (UGVs) have

revolutionized the way in which improvised explasiv
devices (IEDs) are disarmed by explosive ordnarsgodal
(EOD) technicians. Thousands of man-portable UG\sh

as the iRobot PackBot, have been deployed to Irad] a
Afghanistan, where they have saved many lives. 10Oth
robots, such as the Future Combat Systems (FCS)l Sma
Unmanned Ground Vehicle (SUGV) developed by iRobo

are bringing remote reconnaissance capabilitiesthe
broader US Army infantry forces.

The small UGVs currently deployed on the battlefiate
teleoperated by a remote operator who must coalirof the
robot’s actions via a video link. This requires therator’s
full attention and prevents the operator from cantidg
other tasks. Often, another soldier is requireg@rtmect the
operator from any threats in the vicinity.

One of the next steps in battlefield robotics vié to
enable robots to navigate autonomously, allowing t
operator to direct the robot using high-level comds(e.g.
“Navigate to location X.”) and freeing the operatty
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conduct other tasks. Autonomous navigation is a key
capability that is required to achieve force miuiltigtion (i.e.
allowing one operator to control many robots).

Much previous research has been conducted in mobile
robot navigation, including some work with man-pdie
robots [1]-[4]. These robots typically use senssush as
vision, LIDAR, and sonar to perceive the world anid
collisions. While vision and LIDAR work well in ce
weather, they have serious limitations when dealiitly rain
and snow, and they are unable to see through #iizke or
fog. Sonar is able to operate in adverse weather an
penetrate smoke and fog. However, sonar has limaade
when used in the relatively sparse medium of @rof@posed
to the dense medium of water). In addition, whesoaar
pulse hits a flat surface, such as building walla ahallow
angle, it often reflects away from the sensor (Sgecular
reflection), resulting in either an erroneously dorange
reading or no reading at all.

Radar offers the capability to detect obstaclesuihhn
rain, snow, and fog without the limitations of snn@adar-
based Adaptive Cruise Control (ACC) and active bragsist
systems are available as factory options for luxury
automobiles from Audi, BMW, Cadillac, Lexus, and
Mercedes, among others [5]. ACC systems monitordhge
go the vehicle ahead and adjust the throttle tontaa a
constant following distance, while active brakeistss/stems
Provide additional braking force if a collisionimminent.

" For the Daredevil Project [6], we are investigatihg use

of UWB radar to provide all-weather perception dzfitzes

for the man-portable iRobot PackBot UGV. Unlike
conventional radar, which transmits relatively Igngses of
RF energy within a narrow frequency range, UWB rada
sends an extremely short pulse of RF energy aaosile
range of frequencies. The brief duration of eadseesults

in improved range resolution, immunity to passive
interference (e.g. rain, fog, aerosols), and thigyato detect
argets that are stationary with respect to theae[T].

Il. RELATED WORK

In [6], we described our initial experiments with\B
radar. These experiments showed that UWB radardcoul
reliably detect obstacles in a snowstorm, throughsd fog,
and through sparse foliage.

Other researchers have developed obstacle avoideante
navigation techniques for man-portable robots usiisgn,
LIDAR, and sonar. Konolige developed sonar-basedtiee



navigation capabilities for the inexpensive ERRATHbot &
that won second-place in the 1994 AAAI Robot Corntioet \
[1]. Researchers at the Jet Propulsion LaboratdBL),
Carnegie Mellon University (CMU), iRobot, and the
University of Southern California (USC) developed
autonomous navigation capabilities for the Urbarb®o(a
predecessor to the iRobot PackBot) using visionldBAR

[2]. As part of the Small Robot Technology Transfer =
Program, the US Navy Space and Naval Warfare Sgstemi
Command (SPAWAR) and the Idaho National Laboratory | =
(INL) transitioned algorithms for obstacle avoidanc [
mapping, localization, and path planning to sevditiérent
small robots, including the iRobot PackBot [3].

Automotive radars have been used as sensors fombher
of autonomous vehicles, including several entrantghe
DARPA Urban Challenge. The winning vehicle, CMU’s
Boss, used a Continental ARS 300 automotive radar t The RaDeKL radar transmits an ultra wideband p(#6€
measure the velocity of other vehicles [8]. Stadf®odunior MHz wide) centered around 6.35 GHz, with an FCC-
used five BOSCH Long Range Radars to detect movipproved 30 mW peak power level. The brief duratdén
objects in intersections [9]. MIT’s Talos vehiclsed fifteen this pulse results in extremely low transmit po{@ nw),
Delphi ACC millimeter wave radars to detect fastwhich is equivalent to one ten-millionth of the pawof a
approaching vehicles at long range [10]. typical cell phone. The sensor requires a 1.2 Wegvanput

These automotive radars differ in several fundamlentwith a power voltage anywhere in the range of 5243
ways from the UWB radar used by Daredevil. Auton®ti The sensor measures returned radar strength over
radars are optimized for detecting obstacles af tange (up sequential 2 ns time intervals, corresponding tendstrip
to 200 m) with a typical range resolution of 1 ndantypical distance intervals of 0.6 m (2 ft) and one-way migevals
range accuracy of 5% [11]. In general, these radetign of 0.3 m (1 ft). During each time interval, the sen
multiple tracks for the strongest targets. Howevas integrates the signal return strength and mapsdhelting
Leonard points out [10], they are unable to relial#tect the total to an 8-bit value (0-255). The sensor repdhts
difference between small objects (e.g. a metal, laokewer process 256 times, to measure the radar returngstreat
grate) and large objects (e.g. cars). For thatoreaall of ranges from 0 to 78 m (0 to 255 ft). The sensomthe
these teams used radar primarily to detect movinjgats, publishes this 256-value array over its USB integfavhich
since any object moving at high speeds was alnmasaioly is based on FTDI drivers. An optional time delay dze
another vehicle under the conditions of the Urbhallénge. specified before the sensor begins to registermetignals,

In contrast, the Multispectral Solutions (MSSI) Rad allowing the 78 m usable sensor distance to beiginl@enger
Developer's Kit Lite (RaDeKL) UWB radar used byrange from the sensor (up to 273 m). However, agédo
Daredevil was designed for precise ranging at short ranges, multipath from ground reflection becomes an
medium range, providing 0.3 m (1 ft) resolutiorraiges up increasing problem. In our experiments, we did use any
to 78 m (256 ft). Instead of providing processedbraracks, offset, and used the default minimum range of O md a
the RaDeKL radar provides the raw radar strengthsmed maximum range of 78 m.
in each 0.3 m long range bin. As a result, theraetarn can The physical dimensions of the sensor are 15 cnem &
be used to measure the size and shape of obstdeles6 cm (6” x 3.25" x 2.375"). The radar has a fieldveew
addition, the RaDeKL radar is suitable for use mmdoas (FOV) that is 40 degrees wide along the horizontal axis and
well as outdoors, which is a key advantage for marable 40° degrees wide along the vertical axis. Both th@gmit

Fig. 1. Daredevil PackBot equipped with a RaDeKL BVédar on a
pan/tilt mount and a SICK LD OEM LIDAR.

robots that are often used for indoor applications. power and receiver sensitivity can be adjustedherfly by
commands over the USB interface.
Ill. DAREDEVIL PACKBOT We mounted the RaDeKL radar on a Biclops PT pant/til

Fig. 1 shows the Daredevil PackBot, which is bujibn base manufactured by TRACLabs. The panftilt ursvjates
the rugged, man-portable, combat-proven iRobot Back 360" degree coverage along the pan axis (£1&dd 180
platform. For Daredevil, we added an MSSI RaDeKL B\w degree range of motion along the filt axis ($90The
radar sensor mounted on a TRACLabs Biclops pan/tmngular resolution of the panf/tilt encoders is 820IThe

mount, which in turn is mounted on a 1 m tall mase mast Pan/tilt unit requires a 24 V power supply at 1 Adais
exists to raise the sensor and reduce the amouehafy controlled via a USB interface. Power for both BeDeKL

reflected from ground clutter. and the Biclops PT was provided by the PackBotisoand
power system.



IV. UWB RADAR FILTER ALGORITHMS

A. Raw Radar Returns

We developed a real-time viewer for the scanninglutter close to the sensor.

RaDeKL UWB radar mounted on the Biclops pan/tiltumb
Fig. 2 shows an overhead view of a radar scarisnmage,
brighter areas correspond to stronger returns. rédar is
located at the center of the image, and the coricagitcles
are spaced at 1 m intervals. The bright line ingisahe
current bearing of the radar.

For these experiments, we rotated the radaf §&&nning
left and right) at a speed of 0.1 radians/secondl. gower
was used for the radar transmitter (0 dB), while thdar
receiver was attenuated by -20 dB to reduce noise.

Radar readings were received at an average rdt@e biz,
so the average angular separation between readiags

Our experiments showed that the radar can deteue so
obstacles reliably (e.g. walls), but that thera large amount
of energy being returned to the sensor from theumplo
These experiments were
conducted in an open parking lot, with the sensoumted
one meter above the ground, oriented parallel eogtiound,
and horizontally polarized. Based on these expsrts) we
concluded that additional filtering was requiredfagilitate
the interpretation of radar data.

B. Delta Filter Algorithm (DFA)

We have developed theelta filter algorithm (DFA) to
reduce the effects of ground clutter and bettentifietrue
obstacles in the sensor data. The DFA works by exam
the radar return bins in order from the sensor atdwif the
sensor reading for the current bin exceeds theingddom

roughly 0.5. Each reading consisted of the return strengtii€ Previously examined bin by greater than a ttoles

for the 256 range bins (each 0.3 m long) alongcilmeent
bearing of the radar. For each bin, we drew a sgaega at
the corresponding location, with the brightnesghef area
corresponding to strength of the radar return. kénh grid

representation, thex( y) center of each region is not

guantized, since the current sensor bearing isndintmus
floating-point value.

=
y

DAREDEVIL-RADAR SCAN VIEWER

Fig. 2. Raw radar return strength from RaDeKL UWBRdar
positioned 1 m above pavement, with maximum trahgmiver and
-20 dB receiver sensitivity. Concentric circles amaced at 1 m
intervals centered on radar. Brighter areas reptesteonger return
signals. Bright area at center is the result ofigtbclutter. Bright arc
at top center corresponds to a concrete wall.

Fig.2 shows the difficulty of directly interpretirte raw
radar returns. The wide area of strong returns theasensor
is due to reflections from ground clutter. The &réright
arc at the top of the image is a concrete wall. Bitight area
on the top right of the image is a shipping corgairThe
laptop controlling the radar is just to the lefddpelow the
radar at the center of the image.

value d the bin location is marked as occupied. Otherwise
the bin location is marked as empty.

If raw; is the value of bin, then the corresponding delta
filter value is given by (1).
1 if raw - raw_,>d
0 otherwise

We performed a set of experiments comparing UWRirrad
data using DFA to SICK LIDAR range data in an urban
environment (parking lot). Our experiments showt thg
applying the DFA, we can obtain accurate range ingad
from the UWB radar that closely approximate the AR
data. In addition, our experiments show that theBJk&dar
is able to see through fences and detect the désthehind.
These experiments were performed with the deltestiold
set to 1 ¢ = 1), transmit attenuation set to -5 dB, and
receiver sensitivity set to maximum (0 dB).

In the next experiment, we positioned the Daredevil
PackBot approximately 15 m from a chain link feri¢h
white plastic slats forming an opaque barrier. Eigshows
the UWB radar data output by the DFA filter (green)
superimposed on SICK LIDAR data (red) collectedthat
same time. Grid lines are spaced at 10 m inter(¢dlste that
the apparent stair-stepping is an artifact of they whis
image was rendered, with overlapping squares ferddar
points. The actual range data shows smooth arcs.)

At longer ranges, reflections from the wall areresgnted
by arcs rather than lines. This is due to the ladge
horizontal FOV of the sensor couple with the diszegion
of the range values. In the future, we plan touaudate
multiple sensor readings over time using an occcyanid
[12], which should eliminate this effect. Fig. Bosvs that
the UWB radar using DFA can detect both the fenmakttae
building wall behind. In comparison, the LIDAR det® only
the fence and not the building.

deltg = (1)



multiple returns. At the same time, this figureowh the
relatively low angular resolution of the radar sans In

future work, we plan to use techniques such as paroey
grids [12] to accumulate radar data over multigieims and
provide a more precise estimation of target locatiased on
the probabilistic sensor models.

D. Calibrated Max Filter Algorithm (CMFA)

Our most recent and best performing filter alganitis the
calibrated max filter algorithr{CMFA), a modified version
of the MFA. The purpose of the CMFA is to elimindbe
ambient reflections from the ground plane, whicte ar
stronger close to the sensor and weaker farthen filoe
sensor. In the initial MFA, the minimum detectiange had
to be set farther from the sensor to ignore théectbns
from ground clutter, but this prevented the MFA nfro

T

Fig. 3. DFA-filtered UWB radar (green) and LIDARe@) data from

chain link fence in front of building detecting close-range obstacles. The CMFA is abldetect
closer objects by subtracting the ambient reflec{ioith no
C. Max Filter Algorithm (MFA) obstacle present). Any remaining signal above antbie

The second filtering algorithm we developed wasnttzx  indicates the presence of an obstacle.
filter algorithm (MFA). The MFA examines all of the radar In the calibration stage of the CMFA, the radafiist
bins in a given return and returns a positive negqdor the aimed at open space in the current environmenerfes of
bin with the maximum return strength, if that binfarther raw radar readings is returned and the average \afleach
than a minimum range threshold. If the maximum metu bin is stored in the calibration vector (2).

strength is for a bin that is closer than the mimimrange c =} I 2)

threshold, the filter returns a null reading. If redghan one Mo

reading has the maximum value, the MFA returnsctbsest In (2), ¢ is elemeni of the calibration vector; is bini

reading, if the range to that reading is over theimum  from raw radar scaj, andn is the number of raw scans

range threshold, and the null reading otherwise. stored. For our experiments, we averaged over BQradar
The MFA is a very effective method for finding thescans, which were acquired over 2-4 seconds.

strongest radar reflectors in an environment witnyn During operation of the robot, the calibration \ects

reflections. Fig. 4 shows the results from an indoahen subtracted from each raw range scan and tht iig
experiment using the MFA with the radar scannin@®°36 stored in an adjusted range vector (3).

from a fixed location at the center of the hallway 0 if r <c

intersection. The green points show the rangesmetuby a-= L 3)

the MFA. The red points show the LIDAR returns. Tiee [-G otherwise

lines are spaced at 10 m intervals. In (3), & is element of the adjusted range vectorjs bin
i of the raw range vector, ardis element of the calibration

vector.

The MFA is then applied to the adjusted range vettio
determine to return the filtered range value. Toek of the
maximum element of the adjusted range vector igmet. If
more than one element has the maximum value, thexiof
the bin closest to the sensor is returned.

In our experiments, we have found that the CMFAksor
significantly better than the MFA at detecting alod¢s at
close range. This is particularly useful for opienag indoors
and in cluttered environments.

V. RADAR/LIDAR EXPERIMENTS INFOG

Fig. 4. MFA-filtered UWB radar detects doors atges up to 45 m

(green = radar, red = LIDAR, blue lines space amliditervals) We conducted experiments to compare the capabilitie

As shown by Fig. 4, we were able to detect closgatsiat UWB radar and LIDAR in environments filled with vesit
the ends of these hallways at ranges of up to 48rmeNote  Pased fog. In these experiments, we determineddbase
that in the case of the left door, the LIDAR wasyaable to 09 would completely obscure LIDAR and vision, lifits
get a single return, while the UWB radar was ableeturn 09 had no effect on UWB radar returns.



Fig. 5. Daredevil PackBot in fog-free indoor testaa Fig. 7. Fog begins to fill area

Fig. 6. CMFA-filtered UWB radar (green) and LIDARe@) readings Fig. 8. CMFA-filtered UWB radar (green) and LIDARed) readings
in clear ai in partiallv foaoed environme
The following figures show the Daredevil PackBotoiar Fig. 7 shows the test area after the fog machine is

indoor test area. Initially the robot is in clear. &hen the activated. Fog has begun to fill the area, andrdit is
fog machine is activated, and fog is allowed tbtfie room partially obscured. Fig. 8 shows the radar and LRD&turns
until the robot is fully obscured and LIDAR and ivis are in this partially obscured environment. Even irsthioderate

completely blocked. fog density, LIDAR readings have already becomeoatm
Fig. 5 shows the robot in the initial, fog-free @omment.  useless.

The radar rotates 360° (+180°) alternating directivith In front and to the sides of the robot, the LIDAB@nNly

each sweep. Fig. 6 shows the radar (green dods) R  penetrate this moderate fog to a depth of about Dnly

(red dots) returns in this environment. behind the robot is the air sufficiently clear thia¢ LIDAR

Both sensors are able to detect the obstacles ign t§an continue to detect some obstacles. Note tkatratar
environment, and the LIDAR shows considerably highgeturns in Fig. 8 are virtually identical to thaseFig. 6. This
resolution and accuracy. In future work, we plarinrease shows that the fog has not affected radar accuracy.
the effective angular resolution of the radar usingupancy  Fig. 9 shows the test area after it has been cdetple
grid techniques [12], but LIDAR will always providgeater filled with dense fog. Optical sensors, includingibLIDAR
precision in clear air. and vision, are completely useless in this enviremmFig. 9

shows the corresponding radar and LIDAR returnse Th
LIDAR can penetrate less than 1 m through the fogli
directions, and is incapable of detecting any allsta
beyond this range. At the same time, the radarimgadn
Fig. 10 are nearly identical to those in Fig. @é&lair).



Fig. 9. Fog completely obscures robot

Fig. 10. CMFA-fitered UWB radar (green) and LIDARed)
readings in completely fogged environment

We then tested simple collision avoidance behavisisg
both radar and LIDAR. With either sensor, the rolmaives
forward until the range to the closest obstacleadhdrops
below a specified threshold.
flawlessly in clear air, driving to the specifiegtdnce from
the forward wall and stopping. In a fog-filled emnment,
the LIDAR was unable to see through the fog, sortimt
was unable to move. In contrast, the UWB radar alds to
see through the fog, so the robot was able to divéhe
specified distance from the wall and stop. Theres wa
difference in the performance of the radar-basetisim
avoidance behavior in clear air and in dense fog.

VI. CONCLUSIONS ANDFUTURE WORK

Our experiments show that UWB radar can providdéulise
perception capabilities for small, man-portable WQyhder
all-weather conditions. Unlike optical sensorschsuas
LIDAR and vision, UWB radar can penetrate dense tfing
detect obstacles. Unlike conventional radars (sash

Both behaviors workef§!

automotive radars), UWB radar provides precise @ang
information, allowing perception systems to dete&menthe
size and shape of detected obstacles. In additib?dB
radar is effective at sensing objects that argostaty with
respect to the sensor, unlike many types of rakar ¢an
only detect moving obstacles. Finally, due toltwe power
and precise ranging of UWB radars, they are effector
use indoors as well as outdoors and can allow sofooavoid
collisions in cluttered environments.

Future work will include improving the accuracy@¥vB
radar perception algorithms, fusing UWB radar datth
LIDAR and stereo vision data, and integrating dlitteese
perception capabilities within an autonomous naidga
system. We will investigate the use of occupanggisgto
allow the robot to build maps over time that inceahe
effective angular resolution of the radar sensod &umse
radar data with LIDAR and stereo vision data. Wk also
implement integrated capabilities for waypoint mgtion,
path planning, and autonomous exploration for thecDevil
navigation system.

VII.
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