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Abstract—Autonomous man-portable robots have the 
potential to provide a wide range of new capabilities for both 
military and civilian applications.  Previous research in 
autonomy for small robots has focused on vision, LIDAR, and 
sonar sensors.  While vision and LIDAR work well in clear 
weather, they are seriously impaired by rain, snow, fog, and 
smoke.  Sonar can penetrate adverse weather, but has limited 
range outdoors, and suffers from specular reflections indoors.  
For the Daredevil Project, we have investigated the use of ultra-
wideband (UWB) radar to provide obstacle detection 
capabilities for man-portable robots.  Our research shows that 
UWB radar can effectively penetrate adverse weather, 
including dense fog, and detect obstacles that would be 
undetectable by vision or LIDAR under the same conditions.  
We have developed filtering algorithms that process the raw 
radar returns to eliminate reflections from ground clutter and 
make obstacles easier to detect.  We have tested this system on 
an iRobot PackBot equipped with both UWB radar and 
LIDAR, and we have demonstrated how UWB radar can be 
used for obstacle detection in obscured environments. 

I. INTRODUCTION 

MALL unmanned ground vehicles (UGVs) have 
revolutionized the way in which improvised explosive 

devices (IEDs) are disarmed by explosive ordnance disposal 
(EOD) technicians. Thousands of man-portable UGVs, such 
as the iRobot PackBot, have been deployed to Iraq and 
Afghanistan, where they have saved many lives. Other 
robots, such as the Future Combat Systems (FCS) Small 
Unmanned Ground Vehicle (SUGV) developed by iRobot, 
are bringing remote reconnaissance capabilities to the 
broader US Army infantry forces. 

The small UGVs currently deployed on the battlefield are 
teleoperated by a remote operator who must control all of the 
robot’s actions via a video link. This requires the operator’s 
full attention and prevents the operator from conducting 
other tasks. Often, another soldier is required to protect the 
operator from any threats in the vicinity. 

One of the next steps in battlefield robotics will be to 
enable robots to navigate autonomously, allowing the 
operator to direct the robot using high-level commands (e.g. 
“Navigate to location X.”) and freeing the operator to 
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conduct other tasks. Autonomous navigation is a key 
capability that is required to achieve force multiplication (i.e. 
allowing one operator to control many robots). 

Much previous research has been conducted in mobile 
robot navigation, including some work with man-portable 
robots [1]-[4]. These robots typically use sensors such as 
vision, LIDAR, and sonar to perceive the world and avoid 
collisions. While vision and LIDAR work well in clear 
weather, they have serious limitations when dealing with rain 
and snow, and they are unable to see through thick smoke or 
fog. Sonar is able to operate in adverse weather and 
penetrate smoke and fog. However, sonar has limited range 
when used in the relatively sparse medium of air (as opposed 
to the dense medium of water). In addition, when a sonar 
pulse hits a flat surface, such as building wall, at a shallow 
angle, it often reflects away from the sensor (i.e. specular 
reflection), resulting in either an erroneously long range 
reading or no reading at all. 

Radar offers the capability to detect obstacles through 
rain, snow, and fog without the limitations of sonar. Radar-
based Adaptive Cruise Control (ACC) and active brake assist 
systems are available as factory options for luxury 
automobiles from Audi, BMW, Cadillac, Lexus, and 
Mercedes, among others [5]. ACC systems monitor the range 
to the vehicle ahead and adjust the throttle to maintain a 
constant following distance, while active brake assist systems 
provide additional braking force if a collision is imminent. 

For the Daredevil Project [6], we are investigating the use 
of UWB radar to provide all-weather perception capabilities 
for the man-portable iRobot PackBot UGV. Unlike 
conventional radar, which transmits relatively long pulses of 
RF energy within a narrow frequency range, UWB radar 
sends an extremely short pulse of RF energy across a wide 
range of frequencies. The brief duration of each pulse results 
in improved range resolution, immunity to passive 
interference (e.g. rain, fog, aerosols), and the ability to detect 
targets that are stationary with respect to the sensor [7]. 

II.  RELATED WORK 

In [6], we described our initial experiments with UWB 
radar. These experiments showed that UWB radar could 
reliably detect obstacles in a snowstorm, through dense fog, 
and through sparse foliage. 

Other researchers have developed obstacle avoidance and 
navigation techniques for man-portable robots using vision, 
LIDAR, and sonar. Konolige developed sonar-based reactive 
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navigation capabilities for the inexpensive ERRATIC robot 
that won second-place in the 1994 AAAI Robot Competition 
[1]. Researchers at the Jet Propulsion Laboratory (JPL), 
Carnegie Mellon University (CMU), iRobot, and the 
University of Southern California (USC) developed 
autonomous navigation capabilities for the Urban Robot (a 
predecessor to the iRobot PackBot) using vision and LIDAR 
[2]. As part of the Small Robot Technology Transfer 
Program, the US Navy Space and Naval Warfare Systems 
Command (SPAWAR) and the Idaho National Laboratory 
(INL) transitioned algorithms for obstacle avoidance, 
mapping, localization, and path planning to several different 
small robots, including the iRobot PackBot [3]. 

Automotive radars have been used as sensors for a number 
of autonomous vehicles, including several entrants in the 
DARPA Urban Challenge. The winning vehicle, CMU’s 
Boss, used a Continental ARS 300 automotive radar to 
measure the velocity of other vehicles [8]. Stanford’s Junior 
used five BOSCH Long Range Radars to detect moving 
objects in intersections [9]. MIT’s Talos vehicle used fifteen 
Delphi ACC millimeter wave radars to detect fast-
approaching vehicles at long range [10]. 

These automotive radars differ in several fundamental 
ways from the UWB radar used by Daredevil. Automotive 
radars are optimized for detecting obstacles at long range (up 
to 200 m) with a typical range resolution of 1 m and a typical 
range accuracy of 5% [11]. In general, these radars return 
multiple tracks for the strongest targets. However, as 
Leonard points out [10], they are unable to reliably detect the 
difference between small objects (e.g. a metal bolt, a sewer 
grate) and large objects (e.g. cars). For that reason, all of 
these teams used radar primarily to detect moving objects, 
since any object moving at high speeds was almost certainly 
another vehicle under the conditions of the Urban Challenge. 

In contrast, the Multispectral Solutions (MSSI) Radar 
Developer’s Kit Lite (RaDeKL) UWB radar used by 
Daredevil was designed for precise ranging at short to 
medium range, providing 0.3 m (1 ft) resolution at ranges up 
to 78 m (256 ft). Instead of providing processed radar tracks, 
the RaDeKL radar provides the raw radar strength measured 
in each 0.3 m long range bin. As a result, the radar return can 
be used to measure the size and shape of obstacles. In 
addition, the RaDeKL radar is suitable for use indoors as 
well as outdoors, which is a key advantage for man-portable 
robots that are often used for indoor applications. 

III.  DAREDEVIL PACKBOT 

Fig. 1 shows the Daredevil PackBot, which is built upon 
the rugged, man-portable, combat-proven iRobot PackBot 
platform. For Daredevil, we added an MSSI RaDeKL UWB 
radar sensor mounted on a TRACLabs Biclops pan/tilt 
mount, which in turn is mounted on a 1 m tall mast. The mast 
exists to raise the sensor and reduce the amount of energy 
reflected from ground clutter. 

 
The RaDeKL radar transmits an ultra wideband pulse (400 

MHz wide) centered around 6.35 GHz, with an FCC-
approved 30 mW peak power level. The brief duration of 
this pulse results in extremely low transmit power (0.2 nW), 
which is equivalent to one ten-millionth of the power of a 
typical cell phone. The sensor requires a 1.2 W power input 
with a power voltage anywhere in the range of 7.2-35 V.  

The sensor measures returned radar strength over 
sequential 2 ns time intervals, corresponding to round-trip 
distance intervals of 0.6 m (2 ft) and one-way range intevals 
of 0.3 m (1 ft). During each time interval, the sensor 
integrates the signal return strength and maps the resulting 
total to an 8-bit value (0-255). The sensor repeats this 
process 256 times, to measure the radar return strength at 
ranges from 0 to 78 m (0 to 255 ft). The sensor then 
publishes this 256-value array over its USB interface, which 
is based on FTDI drivers. An optional time delay can be 
specified before the sensor begins to register return signals, 
allowing the 78 m usable sensor distance to begin at a longer 
range from the sensor (up to 273 m). However, at longer 
ranges, multipath from ground reflection becomes an 
increasing problem. In our experiments, we did not use any 
offset, and used the default minimum range of 0 m and 
maximum range of 78 m. 

The physical dimensions of the sensor are 15 cm x 8 cm x 
6 cm (6” x 3.25” x 2.375”). The radar has a field-of-view 
(FOV) that is 40° degrees wide along the horizontal axis and 
40° degrees wide along the vertical axis.  Both the transmit 
power and receiver sensitivity can be adjusted on-the-fly by 
commands over the USB interface. 

We mounted the RaDeKL radar on a Biclops PT pan/tilt 
base manufactured by TRACLabs. The pan/tilt unit provides 
360° degree coverage along the pan axis (±180°) and 180° 
degree range of motion along the tilt axis (±90°). The 
angular resolution of the pan/tilt encoders is 0.018°. The 
pan/tilt unit requires a 24 V power supply at 1 A and is 
controlled via a USB interface. Power for both the RaDeKL 
and the Biclops PT was provided by the PackBot’s onboard 
power system. 

 
Fig. 1. Daredevil PackBot equipped with a RaDeKL UWB radar on a 
pan/tilt mount and a SICK LD OEM LIDAR. 



  

IV. UWB RADAR FILTER ALGORITHMS 

A. Raw Radar Returns 

We developed a real-time viewer for the scanning 
RaDeKL UWB radar mounted on the Biclops pan/tilt mount. 
Fig. 2 shows an overhead view of a radar scan. In this image, 
brighter areas correspond to stronger returns. The radar is 
located at the center of the image, and the concentric circles 
are spaced at 1 m intervals. The bright line indicates the 
current bearing of the radar. 

For these experiments, we rotated the radar 360° (panning 
left and right) at a speed of 0.1 radians/second. Full power 
was used for the radar transmitter (0 dB), while the radar 
receiver was attenuated by -20 dB to reduce noise. 

Radar readings were received at an average rate of 10 Hz, 
so the average angular separation between readings was 
roughly 0.5°. Each reading consisted of the return strength 
for the 256 range bins (each 0.3 m long) along the current 
bearing of the radar. For each bin, we drew a square area at 
the corresponding location, with the brightness of the area 
corresponding to strength of the radar return. Unlike a grid 
representation, the (x, y) center of each region is not 
quantized, since the current sensor bearing is a continuous 
floating-point value. 

 
Fig.2 shows the difficulty of directly interpreting the raw 

radar returns. The wide area of strong returns near the sensor 
is due to reflections from ground clutter. The large, bright 
arc at the top of the image is a concrete wall. The bright area 
on the top right of the image is a shipping container. The 
laptop controlling the radar is just to the left and below the 
radar at the center of the image. 

Our experiments showed that the radar can detect some 
obstacles reliably (e.g. walls), but that there is a large amount 
of energy being returned to the sensor from the ground 
clutter close to the sensor. These experiments were 
conducted in an open parking lot, with the sensor mounted 
one meter above the ground, oriented parallel to the ground, 
and horizontally polarized.  Based on these experiments, we 
concluded that additional filtering was required to facilitate 
the interpretation of radar data. 

B. Delta Filter Algorithm (DFA) 

We have developed the delta filter algorithm (DFA) to 
reduce the effects of ground clutter and better identify true 
obstacles in the sensor data. The DFA works by examining 
the radar return bins in order from the sensor outward. If the 
sensor reading for the current bin exceeds the reading from 
the previously examined bin by greater than a threshold 
value d, the bin location is marked as occupied. Otherwise, 
the bin location is marked as empty. 

If rawi is the value of bin i, then the corresponding delta 
filter value is given by (1). 
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We performed a set of experiments comparing UWB radar 
data using DFA to SICK LIDAR range data in an urban 
environment (parking lot). Our experiments show that by 
applying the DFA, we can obtain accurate range readings 
from the UWB radar that closely approximate the LIDAR 
data. In addition, our experiments show that the UWB radar 
is able to see through fences and detect the obstacles behind. 
These experiments were performed with the delta threshold 
set to 1 (d = 1), transmit attenuation set to -5 dB, and 
receiver sensitivity set to maximum (0 dB). 

In the next experiment, we positioned the Daredevil 
PackBot approximately 15 m from a chain link fence with 
white plastic slats forming an opaque barrier. Fig. 5 shows 
the UWB radar data output by the DFA filter (green) 
superimposed on SICK LIDAR data (red) collected at the 
same time. Grid lines are spaced at 10 m intervals. (Note that 
the apparent stair-stepping is an artifact of the way this 
image was rendered, with overlapping squares for the radar 
points. The actual range data shows smooth arcs.) 

At longer ranges, reflections from the wall are represented 
by arcs rather than lines. This is due to the large 40° 
horizontal FOV of the sensor couple with the discretization 
of the range values.  In the future, we plan to accumulate 
multiple sensor readings over time using an occupancy grid 
[12], which should eliminate this effect.  Fig. 3 shows that 
the UWB radar using DFA can detect both the fence and the 
building wall behind. In comparison, the LIDAR detects only 
the fence and not the building. 

 
Fig. 2. Raw radar return strength from RaDeKL UWB radar 
positioned 1 m above pavement, with maximum transmit power and 
-20 dB receiver sensitivity. Concentric circles are spaced at 1 m 
intervals centered on radar. Brighter areas represent stronger return 
signals. Bright area at center is the result of ground clutter. Bright arc 
at top center corresponds to a concrete wall. 



  

 

C. Max Filter Algorithm (MFA) 

The second filtering algorithm we developed was the max 
filter algorithm (MFA).  The MFA examines all of the radar 
bins in a given return and returns a positive reading for the 
bin with the maximum return strength, if that bin is farther 
than a minimum range threshold. If the maximum return 
strength is for a bin that is closer than the minimum range 
threshold, the filter returns a null reading. If more than one 
reading has the maximum value, the MFA returns the closest 
reading, if the range to that reading is over the minimum 
range threshold, and the null reading otherwise. 

The MFA is a very effective method for finding the 
strongest radar reflectors in an environment with many 
reflections. Fig. 4 shows the results from an indoor 
experiment using the MFA with the radar scanning 360° 
from a fixed location at the center of the hallway 
intersection. The green points show the ranges returned by 
the MFA. The red points show the LIDAR returns. The blue 
lines are spaced at 10 m intervals. 

 
As shown by Fig. 4, we were able to detect closed doors at 

the ends of these hallways at ranges of up to 45 meters. Note 
that in the case of the left door, the LIDAR was only able to 
get a single return, while the UWB radar was able to return 

multiple returns.  At the same time, this figure shows the 
relatively low angular resolution of the radar sensor.  In 
future work, we plan to use techniques such as occupancy 
grids [12] to accumulate radar data over multiple returns and 
provide a more precise estimation of target location based on 
the probabilistic sensor models. 

D. Calibrated Max Filter Algorithm (CMFA) 

Our most recent and best performing filter algorithm is the 
calibrated max filter algorithm (CMFA), a modified version 
of the MFA. The purpose of the CMFA is to eliminate the 
ambient reflections from the ground plane, which are 
stronger close to the sensor and weaker farther from the 
sensor. In the initial MFA, the minimum detection range had 
to be set farther from the sensor to ignore the reflections 
from ground clutter, but this prevented the MFA from 
detecting close-range obstacles. The CMFA is able to detect 
closer objects by subtracting the ambient reflection (with no 
obstacle present). Any remaining signal above ambient 
indicates the presence of an obstacle. 

In the calibration stage of the CMFA, the radar is first 
aimed at open space in the current environment. A series of 
raw radar readings is returned and the average value of each 
bin is stored in the calibration vector (2). 
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In (2), ci is element i of the calibration vector, r ij is bin i 
from raw radar scan j, and n is the number of raw scans 
stored. For our experiments, we averaged over 20 raw radar 
scans, which were acquired over 2-4 seconds. 

During operation of the robot, the calibration vector is 
then subtracted from each raw range scan and the result is 
stored in an adjusted range vector (3). 
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In (3), ai is element i of the adjusted range vector, r i is bin 
i of the raw range vector, and ci is element i of the calibration 
vector. 

The MFA is then applied to the adjusted range vector to 
determine to return the filtered range value. The index of the 
maximum element of the adjusted range vector is returned. If 
more than one element has the maximum value, the index of 
the bin closest to the sensor is returned. 

In our experiments, we have found that the CMFA works 
significantly better than the MFA at detecting obstacles at 
close range. This is particularly useful for operations indoors 
and in cluttered environments. 

V. RADAR/LIDAR  EXPERIMENTS IN FOG 

We conducted experiments to compare the capabilities of 
UWB radar and LIDAR in environments filled with water-
based fog. In these experiments, we determined that dense 
fog would completely obscure LIDAR and vision, but this 
fog had no effect on UWB radar returns. 

Fig. 3. DFA-filtered UWB radar (green) and LIDAR (red) data from 
chain link fence in front of building 

Fig. 4. MFA-filtered UWB radar detects doors at ranges up to 45 m 
(green = radar, red = LIDAR, blue lines space at 10 m intervals) 



  

 

 
The following figures show the Daredevil PackBot in our 

indoor test area. Initially the robot is in clear air. Then the 
fog machine is activated, and fog is allowed to fill the room 
until the robot is fully obscured and LIDAR and vision are 
completely blocked. 

Fig. 5 shows the robot in the initial, fog-free environment.  
The radar rotates 360° (±180°) alternating direction with 
each sweep.  Fig. 6 shows the radar (green dots) and LIDAR 
(red dots) returns in this environment. 

Both sensors are able to detect the obstacles in this 
environment, and the LIDAR shows considerably higher 
resolution and accuracy. In future work, we plan to increase 
the effective angular resolution of the radar using occupancy 
grid techniques [12], but LIDAR will always provide greater 
precision in clear air. 

 

 

 
Fig. 7 shows the test area after the fog machine is 

activated. Fog has begun to fill the area, and the robot is 
partially obscured. Fig. 8 shows the radar and LIDAR returns 
in this partially obscured environment. Even in this moderate 
fog density, LIDAR readings have already become almost 
useless.  

In front and to the sides of the robot, the LIDAR can only 
penetrate this moderate fog to a depth of about 1 m. Only 
behind the robot is the air sufficiently clear that the LIDAR 
can continue to detect some obstacles. Note that the radar 
returns in Fig. 8 are virtually identical to those in Fig. 6. This 
shows that the fog has not affected radar accuracy. 

Fig. 9 shows the test area after it has been completely 
filled with dense fog. Optical sensors, including both LIDAR 
and vision, are completely useless in this environment. Fig. 9 
shows the corresponding radar and LIDAR returns. The 
LIDAR can penetrate less than 1 m through the fog in all 
directions, and is incapable of detecting any obstacles 
beyond this range. At the same time, the radar readings in 
Fig. 10 are nearly identical to those in Fig. 6 (clear air). 

 
Fig. 8. CMFA-filtered UWB radar (green) and LIDAR (red) readings 
in partially fogged environment 

 
Fig. 7. Fog begins to fill area 

 
Fig. 6. CMFA-filtered UWB radar (green) and LIDAR (red) readings 
in clear air 

 
Fig. 5. Daredevil PackBot in fog-free indoor test area 



  

 

 
We then tested simple collision avoidance behaviors using 

both radar and LIDAR. With either sensor, the robot moves 
forward until the range to the closest obstacle ahead drops 
below a specified threshold.  Both behaviors worked 
flawlessly in clear air, driving to the specified distance from 
the forward wall and stopping. In a fog-filled environment, 
the LIDAR was unable to see through the fog, so the robot 
was unable to move. In contrast, the UWB radar was able to 
see through the fog, so the robot was able to drive to the 
specified distance from the wall and stop. There was no 
difference in the performance of the radar-based collision 
avoidance behavior in clear air and in dense fog. 

VI. CONCLUSIONS AND FUTURE WORK 

Our experiments show that UWB radar can provide useful 
perception capabilities for small, man-portable UGVs under 
all-weather conditions.  Unlike optical sensors, such as 
LIDAR and vision, UWB radar can penetrate dense fog to 
detect obstacles.  Unlike conventional radars (such as 

automotive radars), UWB radar provides precise range 
information, allowing perception systems to determine the 
size and shape of detected obstacles.  In addition, UWB 
radar is effective at sensing objects that are stationary with 
respect to the sensor, unlike many types of radar that can 
only detect moving obstacles.  Finally, due to the low power 
and precise ranging of UWB radars, they are effective for 
use indoors as well as outdoors and can allow robots to avoid 
collisions in cluttered environments. 

Future work will include improving the accuracy of UWB 
radar perception algorithms, fusing UWB radar data with 
LIDAR and stereo vision data, and integrating all of these 
perception capabilities within an autonomous navigation 
system.  We will investigate the use of occupancy grids to 
allow the robot to build maps over time that increase the 
effective angular resolution of the radar sensor and fuse 
radar data with LIDAR and stereo vision data.  We will also 
implement integrated capabilities for waypoint navigation, 
path planning, and autonomous exploration for the Daredevil 
navigation system. 
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Fig. 10. CMFA-filtered UWB radar (green) and LIDAR (red) 
readings in completely fogged environment 

 
Fig. 9. Fog completely obscures robot 


